Published
A prediction model of mining subsidence in thick loose layer based on probability integral model
Un modelo de predicción de subsidencia minera en una capa gruesa y suelta basada en el modelo integral de probabilidad
DOI:
https://doi.org/10.15446/esrj.v24n3.90111Keywords:
probability integral, subsidence predict, thick loose layer, main influence radius, (en)probabilidad integral, predicción de subsidencia, capa suelta gruesa, radio de influencia principal, (es)
Downloads
The probability integral method is the most commonly used mining subsidence prediction model, but it is only applicable to ordinary geological mining conditions. When the loose layer in the geological mining conditions where the mining face is located is too thick, many inaccurate phenomena will occur when the movement deformation value is predicted by the probability integral method. The most obvious one is the problem that the predicted value converges too fast compared with the measured value in the edge of the sinking basin. In 2012, Wang and Deng proposed a modified model of probability integral method for the marginal errors in the model of probability integral method and verified the feasibility of the method through examples. In this paper, the method is applied to the prediction of surface movement under thick and loose layers after modified. Through practical application, it is found that due to the angle between the working face and the horizontal direction, the average mining depth in the strike direction is different from the average mining depth in the inclined direction, and the main influence radius of the two main sections are often. Therefore, based on this problem, this paper divides the main influence radius into trend and tendency and adjusts the parameters in the model to find the rules of the parameters. The original method uses a dynamic scale factor to adjust the predicted shape of the graph by adjusting the sinking coefficient. This study is aimed to set the scale factor to 0.5 and fix the value of the sinking factor, and propose to adjust the integral range and then adjust the shape of the graph to make it more in line with the actual measurement situation.
El método integral de probabilidad es el modelo de predicción de subsidencia en minas más utilizado, pero solo es aplicable a las condiciones geológicas ordinarias de la minería. Cuando una capa suelta en las condiciones de extracción geológica donde se encuentra la cara de extracción es demasiado gruesa, el método integral de probabilidad no es exacto al predecir el valor de deformación del movimiento. El problema más obvio es que el valor predicho converge demasiado rápido en comparación con el valor medido en el borde de la cuenca de hundimiento. En 2012, Wang Zhengshuai propuso un modelo modificado del método integral de probabilidad para los errores marginales en el modelo del método integral de probabilidad y verificó la viabilidad del método a través de ejemplos. En este documento, el método se aplica a la predicción del movimiento de la superficie bajo capas gruesas y sueltas después de la modificación. A través de la aplicación práctica, se encuentra que debido al ángulo entre la cara de trabajo y la dirección horizontal, la profundidad promedio de extracción en la dirección de impacto es diferente a la profundidad promedio de extracción en la dirección inclinada, y frecuentemente al radio de influencia principal de las dos secciones principales. Por lo tanto, con base en este problema, este documento divide el radio de influencia principal en tendencia y ajusta los parámetros en el modelo para encontrar las reglas. El método original usa un factor de escala dinámico para ajustar la forma pronosticada del gráfico ajustando el coeficiente de hundimiento. Este estudio busca establecer el factor de escala en 0.5, fijar el valor del factor de hundimiento, ajustar el rango integral y luego ajustar la forma del gráfico para que esté más en línea con la situación de medición real.
References
Ding, R., Liu, H., & Dong, J. (2018). GIS-Based Subsidence Prediction of Yuzhou Goaf Area at the Middle Route of the South-to-North Water Diversion Project. Geotechnical and Geological Engineering.
Fan, H. D., Gu, W., Qin, Y., Xue, J. Q., & Chen, B. Q. (2014). A model for extracting large deformation mining subsidence using D- InSAR technique and probability integral method. Transactions of Nonferrous Metals Society of China.
Hou, D., Li, D., Xu, G., & Zhang, Y. (2018). Superposition model for analyzing the dynamic ground subsidence in mining area of thick loose layer. International Journal of Mining Science and Technology.
Ma, W. J., & Hu, H. F. (2013). The Strata Movement Regularity and Parameter Simulation Analysis in Multiple Seams Repeated Mining. Applied Mechanics and Materials.
Wang, L., Deng, K., Fan, H., & Zhou, F. (2018). Monitoring of large-scale deformation in mining areas using sub-band InSAR and the probability integral fusion method. International Journal of Remote Sensing.
Wang, L., Deng, K., & Zheng, M. (2020). Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking. International Journal of Applied Earth Observation and Geoinformation.
Wang, L., Jiang, C., Wei, T., Li, N., Chi, S., Zha, J., & Fang, S. (2019). Robust Estimation of Angular Parameters of the Surface Moving Basin Boundary Induced by Coal Mining: A Case of Huainan Mining Area. KSCE Journal of Civil Engineering.
Wang, Y. H., Zhou, J. W., & Wen, B. (2013). Subsidence Prediction under Thick Alluvium Based on Probability Integration Method. Applied Mechanics and Materials.
Wang, Z., & Deng, K. (2012). Edge correction model of subsidence prediction by probability integral method. Journal of Xi’an university of science and technology, 32(04):495-499.
Xie, Y., Zhang, A., Liu, H., & Feng, L. (2019). Geo-informatics in Sustainable Ecosystem and Society. Springer Science and Business Media LLC.
Zha, J. F., Feng, W. K., Zhu, X. J., & Mi, L. Q. (2011). Analysis accuracy and robustness of parameters inversion in probability integral method by genetic algorithm. Seventh International Conference on Natural Computation.
Zhang, Z., & Lei, T. (2012). One Design Method of Pipeline in Mined-Out Area, Volume 4 Pipelining in Northern and Offshore Environments Strain-Based Design Risk and Reliability Standards and Regulations.
Zhou, D., Wu, K., Li, L., Diao, X., & Kong, X. (2016). A new methodology for studying the spreading process of mining subsidence in rock mass and alluvial soil: an example from the Huainan coal mine, China. Bulletin of Engineering Geology and the Environment.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Tao Wei, Guangli Guo, Huaizhan Li, Lei Wang, Qian Jiang, Chunmei Jiang. (2023). A novel probability integral method segmental modified model for subsidence prediction applicable to thick loose layer mining areas. Environmental Science and Pollution Research, 30(18), p.52049. https://doi.org/10.1007/s11356-023-26021-5.
2. Yu Xiao, Song-Wei Wang, Hong-Wu Song, Shuai-Feng Chen, Qi Yu, Shi-Hong Zhang. (2024). Inhibition of precipitation structure transformation and enhancement of hardness by trace La addition in Cu-1Cr-0.1Zr alloy sheets. Materials Today Communications, 38, p.108413. https://doi.org/10.1016/j.mtcomm.2024.108413.
3. Makavelo Deon, Qiang Zhang, Meng Li, Peng Huang, Zhongya Wu, Chano Francisco. (2024). Analysis of Solid Backfilling Effects on Strata and Ground Subsidence in a Longwall Coal Mine Beneath a City. Applied Sciences, 14(16), p.6924. https://doi.org/10.3390/app14166924.
4. Jiachen Wang, Shanxi Wu, Zhaohui Wang, Aleksandra Barbaryka, Michael Tost, Meng Li. (2025). New Prediction Method of Subsidence Based on the Numerical Displacement Analysis: A Study Case of Deep-Buried Thick Alluvial Layer and Thin Bedrock. Rock Mechanics and Rock Engineering, https://doi.org/10.1007/s00603-025-04459-y.
5. Jinman Zhang, Jiewei Li, Liangji Xu, Ruirui Xu, Caiya Yue, Suzanne M. Shontz. (2023). Model Construction and Parameters Acquisition of the Predicted Surface Movement Deformation under Thick Loose Layer Mining Area. Mathematical Problems in Engineering, 2023(1) https://doi.org/10.1155/2023/8796194.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.