Published

2020-10-12

Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters

Método de monitoreo de hundimiento y deformación longitudinal de la tierra en desastres sísmicos geológicos

DOI:

https://doi.org/10.15446/esrj.v24n3.90290

Keywords:

Earthquake, Geological hazards, Longitudinal, Land subsidence, Deformation monitoring, Simulator, Sensing optical cable (en)
Terremoto, Peligros geológicos, Longitudinal, Hundimiento de la tierra, Monitoreo de la deformación, Simulador, Sensor de cable óptico (es)

Downloads

Authors

  • Aimei Xu School of Civil Engineering and Architecture, Xinyu University, Xinyu, 338000, China
  • Hojatallah Azarkhosh College of civil and transportation engineering, Hohai University, Nanjing, China
  • Erjun Wu College of civil and transportation engineering, Hohai University, Nanjing, china

Monitoring of longitudinal land subsidence and deformation in seismic and geological hazards plays an important role in preventing and curing land collapse, land subsidence, and ground cracks. In this paper, a distributed monitoring model experiment on vertical land subsidence and deformation of seismic and geological hazards is carried out by Brillouin optical frequency-domain analysis technology (BOTDA). By using the self-made indoor longitudinal land subsidence and deformation simulation box, different intensity seismic ground is simulated by air bag. Distributed optical fibers are used to monitor the longitudinal land subsidence and deformation during different intensity seismic and geological disasters. According to different intensity seismic and geological disasters, distributed sensing optical fibers cooperate with the ground to compress or stretch longitudinally and obtain the data of longitudinal land subsidence and deformation. The correction coefficient is introduced to modify the monitoring data of confining pressure-sensing optical fiber and complete the precise monitoring of vertical land subsidence and deformation in seismic and geological hazards. The experimental results show that this method can monitor the vertical ground subsidence and deformation of seismic and geological hazards under different conditions, and the monitoring efficiency and cost are superior to GPS and inertial monitoring methods, and the practical application value is high.

El monitoreo del hundimiento longitudinal de la tierra y la deformación en los riesgos sísmicos y geológicos juega un papel importante en la prevención y corrección del colapso, el hundimiento de la tierra y las grietas del suelo. En este documento, la tecnología de análisis de dominio de frecuencia óptica de Brillouin (BOTDA) sirve para llevar a cabo un experimento de modelo de monitoreo distribuido sobre hundimiento vertical de la tierra y deformación de riesgos sísmicos y geológicos. Mediante el uso de la caja de simulación de deformación del terreno longitudinal interior de fabricación propia se simula un suelo sísmico de diferente intensidad mediante una bolsa de aire. Las fibras ópticas distribuidas se utilizan para controlar el hundimiento y la deformación del terreno longitudinal durante desastres sísmicos y geológicos de diferente intensidad. De acuerdo con estos movimientos, las fibras ópticas de detección distribuida cooperan con el suelo para comprimir o estirar longitudinalmente y obtener los datos de hundimiento y deformación del terreno longitudinal. El coeficiente de corrección se introduce para modificar los datos de monitoreo de la fibra óptica de detección de presión de confinamiento, y completar el monitoreo preciso del hundimiento y deformación vertical de la tierra. Los resultados experimentales muestran que este método puede monitorear el hundimiento vertical del suelo y la deformación de los riesgos sísmicos y geológicos en diferentes condiciones. La eficiencia y el costo del monitoreo son superiores a los métodos de monitoreo inercial y GPS, y el valor práctico de la aplicación es alto.

References

Bornyakov, S. A., Miroshnichenko, A. I., & Salko, D. V. (2016). Diagnostics of the preseismogenic state of heterogeneous media according to deformation monitoring data. Doklady Earth Sciences, 468(1), 481-484.

Chen, Z., Shao, X., He, X., Wu, J., Xu, X., & Zhang, J. (2017). Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo. Journal of Biomedical Optics, 22(9), 1-10.

Deverel, S. J., Ingrum, T., & Leighton, D. (2016). Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA. Hydrogeology Journal, 24(3), 569-586.

Diao, X., Wu, K., Hu, D., Li, L. & Zhou, D. (2016). Combining differential SAR interferometry and the probability integral method for three-dimensional deformation monitoring of mining areas. International Journal of Remote Sensing, 37(21), 5196-5212.

Dyshlyuk, A. V., Makarova, N. V., Vitrik, O. B., Kulchin, Y. N., & Babin, S. A. (2017). Features of Monitoring Deformation Processes in Ferro-Concrete Designs with Application of the Reflectometer Method of Recording Signals of Fiber Bragg Gratings. Measurement Techniques, 60(7), 701-705.

Foumelis, M., Papageorgiou, E., & Stamatopoulos, C. (2016). Episodic ground deformation signals in Thessaly Plain (Greece) revealed by data mining of SAR interferometry time series. International Journal of Remote Sensing, 37(16), 3696-3711.

Jiang, L. F., & Zhang, Z. W. (2017). Analysis and Design of a Full-bridge CLL Resonant Converter with Double Resonant Tanks. Journal of Power Supply, 15(1), 92-98.

Kim, D., Kim, H., Shin, K. J., & Seo, H. (2016). The Effect of Concrete Deformation on Displacement of an Axially Loaded Drilled Shaft. Marine Georesources & Geotechnology, 34(2), 116-126.

Li, G. W., Nguyen, T. N., Amenuvor, A. C. (2016). Subsidence Prediction of Surcharge Preloaded Low Embankment on Soft Ground Subjected to Cyclic Loading. Marine Georesources & Geotechnology, 34(2), 154-161.

Li, W. J.,Wang, Y. C.,Xu, B., Zhang, Z., Yu, H., & Wu, Q. (2018). The research on network management and online monitoring for communication network for smart distribution and consumption network. Automation & Instrumentation, (4), 27-30.

Lu, Y., Ke, C. Q., Zhou, X., Wang, M., Lin, H., Chen, D., & Jiang, H. (2018). Monitoring land deformation in Changzhou city (China) with multi-band InSAR data sets from 2006 to 2012. International Journal of Remote Sensing, 39(4), 1151-1174.

Sayle, K. L., Hamilton, W. D., Cook, G. T., Ascough, P. L., Gestsdóttir, H., & McGovern, T. H. (2016). Deciphering diet and monitoring movement: Multiple stable isotope analysis of the viking age subsidence at Hofstaðir, Lake Mývatn, Iceland. American Journal of Physical Anthropology, 160(1), 126–136.

Shi, L. P., Liu, D., Li, M. H., Zong, Z. D. (2017). Distributed DC power system based on parallel intelligent battery components. Chinese Journal of Power Sources, 41(4), 612-615.

Song, S. G., Li, S. C., Li, L. P., Zhang, Q. Q., Wang, K., Zhou, Y., & Liu, H. L. (2016). Study on Longitudinal Deformation Profile of Rock Mass in a Subsea Tunnel. Marine Georesources & Geotechnology, 34(4), 376-383.

Tan, J., Cui, Z. D., & Yuan, L. (2016). Study on the Long-term Subsidence of Subway Tunnel in Soft Soil Area. Marine Georesources & Geotechnology, 34(5), 486-492.

Tao, Z., Wang, Y., Zhu, C., Xu, H., Li, G., & He, M. (2019). Mechanical evolution of constant resistance and large deformation anchor cables and their application in landslide monitoring. Bulletin of Engineering Geology and the Environment, (3), 1-17.

Tehrani, J. N., McEwan, A., & Wang, J. (2016). TH‐CD‐207A‐05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals. Medical Physics, 43(6), 3880-3880.

Xu, C., Chen, J., Zhu, H., Liu, H., & Lin, Y. (2018). Experimental Research on Seafloor Mapping and Vertical Deformation Monitoring for Gas Hydrate Zone Using Nine-Axis MEMS Sensor Tapes. IEEE Journal of Oceanic Engineering, PP(99), 1-12.

Zhang, Y. X., Guo, A. T., & Wen, Y. M. (2017). Effects of Different Forms of Iron and Manganese on Generation of H2O2 and Degradation of SDBS in Natural Water Biofilms under Illumination. Journal of Jilin University (Science Edition), 55(2), 458-464.

Zhang, Y.,Zhao, X.,Tu, H., Lu, B., & Li, Y. (2017). A Queue Management Mechanism to Improve 3D Video Transmission in WLAN. Journal of China Academy of Electronics and Information Technology, 12(3), 246-250.

How to Cite

APA

Xu, A., Azarkhosh, H. and Wu, E. (2020). Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters. Earth Sciences Research Journal, 24(3), 259–266. https://doi.org/10.15446/esrj.v24n3.90290

ACM

[1]
Xu, A., Azarkhosh, H. and Wu, E. 2020. Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters. Earth Sciences Research Journal. 24, 3 (Oct. 2020), 259–266. DOI:https://doi.org/10.15446/esrj.v24n3.90290.

ACS

(1)
Xu, A.; Azarkhosh, H.; Wu, E. Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters. Earth sci. res. j. 2020, 24, 259-266.

ABNT

XU, A.; AZARKHOSH, H.; WU, E. Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 259–266, 2020. DOI: 10.15446/esrj.v24n3.90290. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/90290. Acesso em: 28 mar. 2025.

Chicago

Xu, Aimei, Hojatallah Azarkhosh, and Erjun Wu. 2020. “Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters”. Earth Sciences Research Journal 24 (3):259-66. https://doi.org/10.15446/esrj.v24n3.90290.

Harvard

Xu, A., Azarkhosh, H. and Wu, E. (2020) “Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters”, Earth Sciences Research Journal, 24(3), pp. 259–266. doi: 10.15446/esrj.v24n3.90290.

IEEE

[1]
A. Xu, H. Azarkhosh, and E. Wu, “Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters”, Earth sci. res. j., vol. 24, no. 3, pp. 259–266, Oct. 2020.

MLA

Xu, A., H. Azarkhosh, and E. Wu. “Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters”. Earth Sciences Research Journal, vol. 24, no. 3, Oct. 2020, pp. 259-66, doi:10.15446/esrj.v24n3.90290.

Turabian

Xu, Aimei, Hojatallah Azarkhosh, and Erjun Wu. “Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters”. Earth Sciences Research Journal 24, no. 3 (October 12, 2020): 259–266. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/90290.

Vancouver

1.
Xu A, Azarkhosh H, Wu E. Monitoring Method of Longitudinal Land Subsidence and Deformation in Seismic Geological Disasters. Earth sci. res. j. [Internet]. 2020 Oct. 12 [cited 2025 Mar. 28];24(3):259-66. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/90290

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Chih-Chung Chung, Wei-Feng Chien, Van-Nhiem Tran, Hong-Ting Tang, Zih-Yi Li, Muhammad Saqlain. (2023). Laboratory development of TDR automatic distributed settlement sensing for land subsidence monitoring. Measurement, 216, p.112938. https://doi.org/10.1016/j.measurement.2023.112938.

2. Karim Rajabi Khamseh, Alireza Nikbakht Shahbazi, Hossein Fathian, Narges Zohrabi. (2023). Determination of critical aquifer subsidence points by DFFITS-COOK distance method using Importance sampling reliability analysis. Ain Shams Engineering Journal, 14(4), p.101915. https://doi.org/10.1016/j.asej.2022.101915.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 3
  • Captures
  • Mendeley - Readers: 9

Article abstract page views

415

Downloads