Published
Calibration Method of Petroleum Underground Horizon Based on High Precision Gravity and Magnetic Exploration
Método de calibración del horizonte subterráneo de petróleo basado en la gravedad de alta precisión y la exploración magnética
DOI:
https://doi.org/10.15446/esrj.v24n3.90315Keywords:
high precision gravity and magnetic exploration, petroleum, underground layer, layer calibration, bedrock depth (en)gravedad de alta precisión y exploración magnética, petróleo, capa subterránea, calibración de capa, profundidad de la roca madre (es)
Downloads
Because the high-precision calibration results of the petroleum underground layer are of great significance for oil production efficiency, research on the calibration method of the petroleum underground layer based on high precision gravity and magnetic exploration is researched. The gravity magnetic model is used to retrieve the bedrock depth, and the results of the basement structure and sedimentary rock distribution of the gravity and magnetic geology in the petroleum underground horizon of the Tongbai basin are obtained. On this basis, the geological data, logging data, seismic data, and VSP data are comprehensively used, and the layered calibration method is used to calibrate the petroleum underground layer of the Tongbai basin. Considering the seismic datum and the core elevation in the area, the rock formation is divided by various logging curves. The average time difference and density of the divided rock layers are interpolated at equal depth intervals to obtain velocity sequences and density sequences at equal time intervals and finally realize time-depth conversion. When the drilling geological horizon is unified, the synthetic record of the seismic reflection layer is compared with the geological horizon to realize the horizon calibration of the seismic reflection layer. When the local stratification is not uniform, the seismic reflection layer is calibrated by tracking the seismic reflection layer, high-precision velocity analysis, and various synthetic records to verify the reliability of the geological horizon. The results show that the proposed method can accurately survey the geological conditions of the Tongbai basin. It detected 14 basement faults, and the NW-trending and NE-trending faults controlled the basin, while the north-south faults controlled the later evolution of the basin. The method can be used for the horizon calibration of inclined wells, which is suitable not only for anisotropic media but also for formations with a less lateral variation of local formation lithology. Moreover, its usage is flexible, and it can be corrected by multiple speed data.
Debido a que los resultados de calibración de alta precisión de la capa subterránea de petróleo son de gran importancia para la eficiencia de la producción de petróleo, se investiga la investigación sobre el método de calibración de la capa subterránea de petróleo basada en la gravedad de alta precisión y la exploración magnética. El modelo magnético de gravedad se utiliza para recuperar la profundidad de la roca madre, y se obtienen los resultados de la estructura del sótano y la distribución de rocas sedimentarias de la gravedad y la geología magnética en el horizonte subterráneo de petróleo de la cuenca tongbai. Sobre esta base, los datos geológicos, los datos de registro, los datos sísmicos y los datos VSP se usan de manera integral, y el método de calibración en capas se usa para calibrar la capa subterránea de petróleo de la cuenca tongbai. Teniendo en cuenta el dato sísmico y la elevación del núcleo en el área, la formación rocosa se divide por varias curvas de registro. La diferencia de tiempo promedio y la densidad de las capas de roca divididas se interpolan a intervalos de profundidad iguales para obtener secuencias de velocidad y secuencias de densidad a intervalos de tiempo iguales, y finalmente realizar la conversión de profundidad de tiempo. Cuando el horizonte geológico de perforación se unifica, el registro sintético de la capa de reflexión sísmica se compara con el horizonte geológico para realizar la calibración del horizonte de la capa de reflexión sísmica. Cuando la estratificación local no es uniforme, la capa de reflexión sísmica se calibra siguiendo la capa de reflexión sísmica, el análisis de velocidad de alta precisión y varios registros sintéticos para verificar la fiabilidad del horizonte geológico. Los resultados muestran que el método propuesto puede estudiar con precisión las condiciones geológicas de la cuenca tongbai. Detectó 14 fallas en el sótano, y las fallas de tendencia NW y NE controlaron la cuenca, mientras que las fallas norte-sur controlaron la evolución posterior de la cuenca. El método puede usarse para la calibración del horizonte de pozos inclinados, que es adecuado no solo para medios anisotrópicos, sino también para formaciones con menor variación lateral de la litología de formación local. Además, su uso es flexible y puede corregirse con múltiples datos de velocidad.
References
Babak, S., Petiteau, A., Sesana, A., Brem, P., Rosado, P. A., Taylor, S. R., Lassus, A., Hessels, J. W. T., Bassa, C. G., Burgay, M., Caballero, R. N., Champion, D. J., Cognard, I., Desvignes, G., Gair, J. R., Guillemot, L., Janssen, G. H., Karuppusamy, R., Kramer, M., … Verbiest, J. P. W. (2015). European Pulsar Timing Array Limits on Continuous Gravitational Waves From Individual Supermassive Slack Hole Binaries. Monthly Notices of the Royal Astronomical Society, 455, 112-116.
Beck, S., Gutowski, J., & Papadopoulos, G. (2015). Supersymmetry of AdS and Flat IIB Backgrounds. Journal of High Energy Physics, 2015, 1-47.
Foster, M. A., Anderson, R. S., Wyshnytzky, C., Ouimet, W. B., & Dethier, D. P. (2015). Hillslope Lowering Rates and Mobile-Regolith Residence Times From in Situ and Meteoric 10Be Analysis: Boulder Creek Critical Zone Observatory, Colorado. Geological Society of America Bulletin, 127, 862-878.
Jiang, N., & Ma, N. N. (2017). Probility Measure and Dirac Measure Based on Hyperbolic IFSP. Journal of Jilin University (Science Edition), 55, 581-586.
Jokela, N., & Ramallo, A. V. (2015). Universal Properties of Cold Holographic Matter. Physical Review, D 92, 2-64.
Lei, F., Cheng, W. B., & Song, J. X. (2014). Characteristics of Acoustic Resonance and Its Chaotic Suppression in High Pressure Sodium Lamp. Journal of Power Supply, 12, 103-109.
Lian, Z. H., Luo, L. Z., Mou, F. Y., & Ding, J. D. (2017). Research on Load Strength Design of Casing Damage in Oil Exploration. Computer Simulation, 34, 98-103.
Mavrommati, A., Tzorakoleftherakis, E., Abraham, I., & Murphey, T. D. (2017). Real-Time Area Coverage and Target Localization Using Receding-Horizon Ergodic Exploration. IEEE Transactions on Robotics, 86, 1-19.
Metcalfe, I., Crowley, J. L., Nicoll, R. S., & Schmitz, M. (2015). High-precision U-Pb CA-TIMS Calibration of Middle Permian to Lower Triassic Sequences, Mass Extinction and Extreme Climate-Change in Eastern Australian Gondwana. Gondwana Research, 28, 61-81.
Primack, J. (2015). The Island of Knowledge: The Limits of Science and the Search for Meaning. Physics Today, 68(2):49-50.
Qayyum, F., Catuneanu, O., & Groot, P. (2015). Historical Developments in Wheeler Diagrams and Future Directions. Basin Research, 27, 336-350.
Song, J. F. (2017). Common Problems and Countermeasures in the Installation and Construction of Petrochemical Pipeline. Automation & Instrumentation, 43, 207-208.
Yan, S., Zhan, H. L., Zhao, K., Miao, X. Y., Lu, Z. Q., Bao, R. M., Zhu, J., & Xiao, L. Z. (2016). Simultaneous Characterization of Water Content and Distribution in High-Water-Cut Crude Oil. Energy & Fuels, 30, 84-96.
Zhang, Y., Qin, Z. C, & Zhang, W. D. (2017). Asymmetric Interference Alignment for Device-to-Device Underlaying Cellular Networks. Journal of China Academy of Electronics and Information Technology, 12, 232-236.
Zhou, Z. Q. (2018). Power System Harmonic Detection Method and Management Suggestion for a Certain Offshore Oil Platform. Chinese Journal of Power Sources, 35, 15-24.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.