Published
Study on the Evolution Monitoring of Topographic and Hydrological Characteristics of Small Watershed Based on Remote Sensing and GIS
Estudio sobre el seguimiento de la evolución de las características topográficas e hidrológicas de pequeñas cuencas hidrográficas basadas en teledetección y SIG
DOI:
https://doi.org/10.15446/esrj.v24n3.90340Keywords:
Remote Sensing Image, GIS Technology, Small Watershed Topography, Hydrological Characteristics (en)Imagen de teledetección, Tecnología SIG, Topografía de Cuencas Pequeñas, Características hidrológicas (es)
Downloads
Soil and water conservation is one of the key measures to improve the ecological environment of small watersheds and maintain the healthy life of the region. With the current method used to monitor the evolution of topographic and hydrological characteristics of a small watershed, the edge keeping index of the image and the signal-to-noise ratio of the image are low, the monitoring results are inaccurate, and there are some problems such as low edge keeping ability, poor denoising effect, and low monitoring accuracy. A monitoring method based on remote sensing and GIS for the evolution of topographic and hydrological characteristics of small watersheds is proposed. The hyperspectral data was transformed by the Principal Component Analysis (PCA). Group principal component images, use sparse representation method based on adaptive dictionary and dual-tree complex wavelet transform method to denoise principal component images with a small amount of information were the objectives of the paper; also the use the multi-scale wavelet transform to detect image edge; build a binary model of a pixel, extract vegetation index, and terrain factor based on a binary model of the pixel, and realize terrain and hydrological characteristics of the small watershed. The experimental results show that the proposed method has the high edge-preserving ability, good denoising effect, and high monitoring accuracy.
La conservación del suelo y el agua es una de las medidas clave para mejorar el entorno ecológico de las pequeñas cuencas y mantener la vida de la región sana. Con el método actual para monitorear la evolución de las características topográficas e hidrológicas de las cuencas hidrográficas pequeñas, el índice de mantenimiento de bordes de la imagen y la relación señal/ruido de la imagen son bajos, los resultados del monitoreo son inexactos y hay algunos problemas como la capacidad baja del mantenimiento de bordes, un efecto de eliminación de ruido deficiente y una precisión de monitoreo baja. En este trabajo se propone un método de monitoreo basado en teledetección y en Sistemas de Información Geográfica para determinar la evolución de las características topográficas e hidrológicas de pequeñas cuencas hidrográficas. Los datos hiperespectrales fueron transformados por el método de Análisis de Componentes Principales (PCA). Agrupar las imágenes de componentes principales, utilizar un método de representación disperso basado en un diccionario adaptativo y un método de transformación de wavelet complejo de árbol dual para reemplazar las imágenes de componentes principales con una pequeña cantidad de información fueron los principales objetivos de este trabajo; también usar la transformación de wavelet multiescala para detectar el borde de la imagen; construir un modelo binario de píxeles, extraer el índice de vegetación y el factor de terreno basado en el modelo binario de píxeles, y realizar las características del terreno y las características hidrológicas de las pequeñas cuencas. Los resultados experimentales muestran que el método propuesto tiene una alta capacidad de preservación de bordes, buen efecto de eliminación de ruido y alta precisión de monitoreo.
References
Archer, N. A. L., Otten, W., Schmidt, S., Bengough, A. G., Shah, N., & Bonell, M. (2016). Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest and grassland in a temperate northern climate. Ecohydrology, 9, 85-600.
Cao, X. Y., Yang, Q. K., Lan, M., & Wang, C. M. (2018). BDU partition for extracting distributed soil erosion slope length in large-and medium-scale watersheds. Science of Soil and Water Conservation, 16, 34-40.
Cheke, R. A., Young, S., & Garms, R. (2016). Ecological characteristics of Simulium breeding sites in West Africa. Acta Tropica, 167, 148-156.
Cheng, H. Y., & Liu, Y. N. (2020). An improved RSU-based authentication scheme for VANET. Journal of Internet Technology, 21(4).
Cutter, G. R., Stierhoff, K. L., & Demer, D. A. (2016). Remote sensing of habitat characteristics using echo metrics and image-based seabed classes. Ices Journal of Marine Science, 73, fsw024.
Faiz, M. A., Liu, D., Fu, Q., Khan, M., Li, T., & Cui, S. (2018). Assessment of characteristics and distinguished hydrological periods of a river regime. Environmental Earth Sciences, 77, 729.
Gao, N. S., Cheng, B. Z., Hou, H., & Zhang, R. H. (2018). Mesophase pitch based carbon foams as sound absorbers. Materials Letters, 212, 243-246. DOI:10.1016/j.matlet.2017.10.074
Gao, N. S., Guo, X. Y., Cheng, B. Z., Zhang, Y. N., Wei, Z. Y., & Hou, H. (2019). Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole. Ieee Access, 7, 124141-124146. doi:10.1109/access.2019.2938250
Li, S., Yao, T., Yang, W., Yu, W., & Zhu, M. (2016). Melt season hydrological characteristics of the Parlung No. 4 Glacier, in Gangrigabu Mountains, south‐east Tibetan Plateau. Hydrological Processes, 30, 1171-1191.
Lv, D., Jia, Z., Yang, J., & Kasabov, N. (2016). Remote sensing image enhancement based on the combination of nonsubsampled shearlet transform and guided filtering. Optical Engineering, 55, 103-104.
Naik, V. G., Rao, B. R., & Kumar, K. N. (2016). An Analysis on Land Use/Land Cover Using Remote Sensing and GISA Case Study In and Around Chigicherla Watershed Anantapur District, Andhra Pradesh, India. American Journal of Reproductive Immunology, 58, 460–467.
Shevchenko, G. V., Chastikov, V. N., & Maryzhikhin, V. E. (2018). Seasonal Variations in Marine Hydrological Characteristics off the Southwestern Coast of Sakhalin Island. Russian Meteorology and Hydrology, 43, 865-870.
Su, T., Cao, Z., Lv, Z., Liu, C., & Li, X. F. (2016). Multi-dimensional visualization of large-scale marine hydrological environmental data. Advances in Engineering Software, 95, 7-15.
Wu, Z., Liu, Y. N., & Jia, X. X. (2020). A Novel Hierarchical Secret Image Sharing Scheme with Multi-Group Joint Management. Mathematics, 8(3), 12. DOI:10.3390/math8030448
Xiao, Y. C. (2018). Sediment characteristics and terrain evolution in southwest of Hainan Island. Port & Waterway Engineering, 542, 49-53.
Yan, M., Chen, L., Peng, L., & Ke, L. (2016). Parallel programing templates for remote sensing image processing on GPU architectures: design and implementation. Computing, 98, 7-33.
Yang, F., Yang, F., Wang, G. Y., Kong, T., Wang, H., & Zhang, C. S. (2020). Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture, 515, 9. DOI:10.1016/j.aquaculture.2019.734542
Yuan, Q., Zhang, Q., Li, J., Shen, H. F., & Zhang, L. P. (2019). Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 57, 1205-1218.
Zhao, L. L., Liu, C. M., Wu, X. X., Liu, L. H., Wang, Z. G., Sobkowiak, L. (2016). A review of underlying surface parametrization methods in hydrologic models. Acta Geographica Sinica, 71, 1091-1104.
Zhao, X., Wang, P., Chen, C., Jiang, T., Yu, Z. G., & Guo, B. Y. (2017). Waterbody information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge. International Journal of Remote Sensing, 38, 1404-1422.
Zhu, H. C., Huang, W., Zhao, Y. P., Xu, X. B. (2017). The Loess Terrain Automatic Segmentation and Gully Head Recognition Method Based on DEM Image Analysis. Geography and Geo-Information Science, 33, 74.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.