Published

2022-02-07

Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field

Variaciones anómalas en potenciales geoeléctricos observadas a lo largo de un gasoducto en Argentina y su posible intensificación debido a variaciones del campo magnético terrestre

DOI:

https://doi.org/10.15446/esrj.v25n4.91059

Keywords:

Generalized regression neural network (GRNN); Radial basis function neural network (RBFNN); Multiple linear regression (MLR); Interpolation methods; Geoid determination (en)
gasoducto; potenciales caño/suelo; tormentas geomagnéticas (es)

Downloads

Authors

  • Patricia Alejandra Larocca University of Buenos Aires, School of Engineering, Institute of Applied Geodesy and Geophysics
  • M. A. Arecco University of Buenos Aires, School of Engineering, Institute of Applied Geodesy and Geophysics
  • A. C. Macrino University of La Plata, School of Natural Sciences and Museum, Geology Department

Significant anomalous geoelectric potential variations have been observed in a section of the NEUBA II gas pipeline along its route in the district of Saavedra, near the area of Goyena, province of Buenos Aires (Argentine), where it goes through major lithological, edaphological and hydrological variations. Detailed research was conducted, showing that these disturbances may be intensified with variations of the Earth’s magnetic field, during a magnetic storm, as the pipe-to-soil potential (PSP) values remained constant for weeks and then fluctuations from 0.1 V to 0.15 V were recorded in various parts of the pipeline. On the other hand, to provide another analysis of these variations, models based on the distributed source transmission line (DSTL) theory were used, proposing a uniform geoelectric field along the pipeline route. A design was proposed that would allow modeling the response of the pipeline to variations of induced geoelectric fields, taking into account their intensification based on points of discontinuity due to subsoil characteristics or differences in its structure. Good consistency was achieved between the observed and modeled PSPs. The analysis and monitoring of these PSPs is a useful tool to identify the potential risks caused by geomagnetically induced currents in the pipes that would increase the effects due to the structure or the environment in which it is buried.

Se han observado importantes variaciones anómalas en el potencial geoeléctrico sobre un tramo del gasoducto NEUBA II a lo largo de su recorrido en el distrito de Saavedra, cercano a la zona de Goyena, provincia de Buenos Aires (Argentina), donde atraviesa suelos de características litológicas, edafológicas e hidrológicas distintas. Se realizó una investigación detallada que mostró que estas perturbaciones pueden intensificarse con variaciones del campo magnético de la Tierra, durante una tormenta magnética, ya que los valores de la diferencia del potencial tubería-suelo (PSP) permanecían constantes durante semanas y luego se registraron fluctuaciones de 0.1 V a 0.15 V en varias partes del gasoducto. Por otro lado, para brindar otro análisis de estas variaciones, se utilizaron modelos basados en la teoría de la línea de transmisión de fuente distribuida (DSTL), proponiendo un campo geoeléctrico uniforme a lo largo de la ruta del ducto. Se propuso un diseño que permite modelar la respuesta del gasoducto a variaciones de campos geoeléctricos inducidos, teniendo en cuenta su intensificación en base a puntos de discontinuidad por características del subsuelo o diferencias en su estructura. Se logró una buena consistencia entre los PSP observados y modelados. El análisis y seguimiento de estos PSPs es una herramienta útil para identificar los riesgos potenciales provocados por corrientes inducidas geomagnéticamente en las tuberías que incrementan estos efectos debido a la estructura o el entorno en el que está enterrado.

References

Akasofu, S. I. (1981a). Energy coupling between the solar wind and the magnetosphere. Space Science Review, 28, 121-190. DOI: https://doi.org/10.1007/BF00218810

Akasofu, S. I. (1981b). Relationship between AE and Dst indices during geomagnetic storms. Journal of Geophysical Research, 86, 4820. DOI: https://doi.org/10.1029/JA086iA06p04820

Akasofu, S. I. (1989). Solar wind-magnetosphere coupling during intense magnetic storm (1978-1979). Journal of Geophysical Research, 94, 8835.

Ahn, B. H., Kroehl, H. W., Kamide, Y., & Kihn, E. A. (2000). Universal time variations of the auroral electrojet indices. Journal of Geophysical Research, 105, 267–275, DOI:10.1029/1999JA900364. DOI: https://doi.org/10.1029/1999JA900364

Borovsky, J. E. & Shprits, Y. Y. (2017). Is the Dst index sufficient to define all geospace storms? Journal of Geophysical Research: Space Physics, 122(11), 543–547. https://doi.org/10.1002/2017JA024679 DOI: https://doi.org/10.1002/2017JA024679

Boteler, D. (2000). Geomagnetic effects on the pipe-to-soil potentials of a continental pipeline. Advances in Space Research, 26(1), 15-20. DOI: https://doi.org/10.1016/S0273-1177(99)01020-0

Boteler, D. (2013). A new versatile method for modelling geomagnetic induction in pipelines. Geophysical Journal International, 193(1), 98–109. https://doi.org/10.1093/gji/ggs113 DOI: https://doi.org/10.1093/gji/ggs113

Campbell, W. H. (1979). Occurrence of AE and Dst geomagnetic index levels and the selection of the quietest days in a year. Journal of Geophysical Research, 84(A3), 875– 881. DOI:10.1029/JA084iA03p00875. DOI: https://doi.org/10.1029/JA084iA03p00875

Campbell, W. H. (1980). Observation of electric currents in the Alaskan oil pipeline resulting from auroral electrojet current sources. Geophysical Journal of the Royal Astronomical Society, 61(2), 437–449. DOI: https://doi.org/10.1111/j.1365-246X.1980.tb04325.x

Davis, T. N. & Sugiura, M. (1966). Auroral Electrojet Activity Index AE and Its Universal Time Variations. Journal of Geophysical Research, 71(3), 345. DOI: https://doi.org/10.1029/JZ071i003p00785

Fernberg, P. A., Samson, C., Boteler, D. H., Trichtchenko, L. & Larocca, P. (2007). Earth conductivity structures and their effects on geomagnetic induction in pipelines. Annales of Geophysicae, 25, 207–218. DOI: https://doi.org/10.5194/angeo-25-207-2007

Gonzalez, W. D., Tsurutani, B. T., Gonzalez, A. L., Smith, E. J., Tang, F. & Akasofu, S. I. (1989). Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979). Journal of Geophysical Research, 94(A7), 8835-8851. DOI: https://doi.org/10.1029/JA094iA07p08835

Gonzalez, W. D. & Tsurutani, B. T. (1987). Criteria of interplanetary parameters causing intense magnetic storms (Dst< 100 nT). Planet Space Science, 35, 1101. DOI: https://doi.org/10.1016/0032-0633(87)90015-8

Harrington, H. (1947). Explicación de las Hojas Geológicas 33m y 34m. Sierras de Curamalal y de la Ventana. Secretaría de Industria y Comercio Dirección de Minas y Geología, Argentina. Boletín 61, N°44 -S.I.C.

Hejda, P., & Bochniek, J. (2005). Geomagnetically induced pipe to soil voltages in the Czech oil pipelines during Octover-November 2003. Annales Geophysicae, European Geosciences Union, 23(9), 3089-3093. DOI: https://doi.org/10.5194/angeo-23-3089-2005

Ingham, M., & Rodger, C. J. (2018). Telluric Field Variations as Drivers of Variations in Cathodic Protection Potential on a Natural Gas Pipeline in New Zealand. Space weather, 16(9), 1396-1409. DOI: https://doi.org/10.1029/2018SW001985

Newell, P. T., & Gjerloev, J. W. (2011). Evaluation of Super MAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116 (A1), 2211. DOI:10.1029/2011JA016779. DOI: https://doi.org/10.1029/2011JA016779

Osella, A., & Favetto, A. (2000). Effects of soil resistivity on currents induced on pipelines. Journal of Applied Geophysics, 44, 303-312. DOI:10.1016/S0926-9851(00)00008-2. DOI: https://doi.org/10.1016/S0926-9851(00)00008-2

Owens, M. J., & Forsyth, R. J. (2013). The Heliospheric Magnetic Field. Living Reviews in Solar Physics, 10, 5. https://doi.org/10.12942/lrsp-2013-5. DOI: https://doi.org/10.12942/lrsp-2013-5

Pereyra, F. X. (2001). Carta de Línea de Base Ambiental 3763 - IV Coronel Suárez Provincia de Buenos Aires. Buenos Aires: Subsecretaría de Minería de la Nación, Argentina. Segemar-Igrm Direccion De Geologia Ambiental Y Aplicada. https://repositorio.segemar.gov.ar/handle/308849217/2574

Prölss, G. W. (2011). Density Perturbations in the Upper Atmosphere Caused by the Disipation of Solar Wind Energy. Surveys in Geophysics, 32, 101-195. https://doi.org/10.1007/s10712-010-9104-0 DOI: https://doi.org/10.1007/s10712-010-9104-0

Pulkkinen, A., Viljanen, A., Pajunpää, K., & Pirjola, A. (2001). Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network. Journal of Applied Geophysics, 48(4), 219–231. DOI: https://doi.org/10.1016/S0926-9851(01)00108-2

Trichtchenko, L., & Boteler, D. H. (2001). Specification of geomagnetically induced electric fields and currents in pipelines. Journal of Geophysical Research: Space Physics, 106(A10), 21039-21048. DOI: https://doi.org/10.1029/2000JA000207

Tsurutani, B. T. & Gonzalez, W. D. (1997). The interplanetary causes of magnetic storms. A review. In: B. T. Tsurutam, W. D. Gonzalez, Y. Kamide & J. K. Aiballo (Eds.) Magnetic Storms. Geophysical Monograph Series, 98, AGU, Washington, D. C., 77-89. DOI: https://doi.org/10.1029/GM098p0077

Tsurutani, B. T., Kamide, Y., Arballo, J. K., Gonzalez, W. D., & Lepping, R. P. (1999). Interplanetary causes of great and super intense magnetic storms. Physics and Chemistry of the Earth, 24, 101. DOI: https://doi.org/10.1016/S1464-1917(98)00015-4

Viljanen, A., Pulkkinen, A., Pirjola, R., Pajunpaa, K., Posio, P., & Koistinen, A. (2006). Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weather, 4, S10004, DOI:10.1029/2006SW000234. DOI: https://doi.org/10.1029/2006SW000234

Yu, Z., Hao, J., Liu, L., & Wang, Z. (2019). Monitoring Experiment of Electromagnetic Interference Effects Caused by Geomagnetic Storms on Buried Pipelines in China. IEEE Access, 7, 14603-14610. DOI:10.1109/ACCESS.2019.2893963. DOI: https://doi.org/10.1109/ACCESS.2019.2893963

How to Cite

APA

Larocca, P. A., Arecco, M. A. and Macrino, A. C. (2022). Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field. Earth Sciences Research Journal, 25(4), 363–369. https://doi.org/10.15446/esrj.v25n4.91059

ACM

[1]
Larocca, P.A., Arecco, M.A. and Macrino, A.C. 2022. Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field. Earth Sciences Research Journal. 25, 4 (Feb. 2022), 363–369. DOI:https://doi.org/10.15446/esrj.v25n4.91059.

ACS

(1)
Larocca, P. A.; Arecco, M. A.; Macrino, A. C. Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field. Earth sci. res. j. 2022, 25, 363-369.

ABNT

LAROCCA, P. A.; ARECCO, M. A.; MACRINO, A. C. Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field. Earth Sciences Research Journal, [S. l.], v. 25, n. 4, p. 363–369, 2022. DOI: 10.15446/esrj.v25n4.91059. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/91059. Acesso em: 16 jan. 2025.

Chicago

Larocca, Patricia Alejandra, M. A. Arecco, and A. C. Macrino. 2022. “Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field”. Earth Sciences Research Journal 25 (4):363-69. https://doi.org/10.15446/esrj.v25n4.91059.

Harvard

Larocca, P. A., Arecco, M. A. and Macrino, A. C. (2022) “Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field”, Earth Sciences Research Journal, 25(4), pp. 363–369. doi: 10.15446/esrj.v25n4.91059.

IEEE

[1]
P. A. Larocca, M. A. Arecco, and A. C. Macrino, “Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field”, Earth sci. res. j., vol. 25, no. 4, pp. 363–369, Feb. 2022.

MLA

Larocca, P. A., M. A. Arecco, and A. C. Macrino. “Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field”. Earth Sciences Research Journal, vol. 25, no. 4, Feb. 2022, pp. 363-9, doi:10.15446/esrj.v25n4.91059.

Turabian

Larocca, Patricia Alejandra, M. A. Arecco, and A. C. Macrino. “Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field”. Earth Sciences Research Journal 25, no. 4 (February 7, 2022): 363–369. Accessed January 16, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/91059.

Vancouver

1.
Larocca PA, Arecco MA, Macrino AC. Anomalous geoelectric potential variations observed along a gas pipeline section in Argentine, possible intensification with variations of the Earth’s magnetic field. Earth sci. res. j. [Internet]. 2022 Feb. 7 [cited 2025 Jan. 16];25(4):363-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/91059

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Maizura Mohd Sani, Nurhani Kasuan, Mohamad Huzaimy Jusoh, Ahmad Ihsan Mohd Yassin, Zakaria Hussain, Muhammad Asraf Hairuddin. (2023). Preliminary Study on the Impact of GIC on Pipe-to-Soil Potential of Buried Pipeline Near Equatorial Region. 2023 IEEE Symposium on Industrial Electronics & Applications (ISIEA). , p.1. https://doi.org/10.1109/ISIEA58478.2023.10212318.

Dimensions

PlumX

Article abstract page views

266

Downloads

Download data is not yet available.