Published

2022-02-07

Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study

Predicción de ondulación geoide con Redes Neuronales Artificiales (base radial y regresión generalizada), regresión lineal múltiple y métodos de interpolación: estudio comparativo

DOI:

https://doi.org/10.15446/esrj.v25n4.91195

Keywords:

Generalized regression neural network, Radial basis function neural network, Multiple linear regression, Interpolation methods (en)
red neuronal de regresión generalizada; red neuronal de base radial; regresión lineal múltiple; métodos de interpolación; determinación geoide (es)

Downloads

Authors

The present work aimed to develop a prediction model to estimate geoid undulation and to compare its efficiency with other methods including radial basis function neural network (RBFNN), generalized regression neural network (GRNN), multiple linear regression (MLR) and, ten different interpolation methods. In this study, the k-fold cross-validation method was used to evaluate the model and its behavior on the independent dataset. With this validation method, each of a k number of groups has the chance to be divided into training and testing data. The performances of the methods were evaluated in terms of the root mean square error (RMSE) mean absolute error (MAE), Nash–Sutcliffe efficiency coefficient (NSE), and correlation coefficient (R2) and using graphical indicators. The evaluation of the performance of the datasets obtained using cross-validation was done in two ways. If we accept the method having the minimum error result as the most appropriate method, the natural neighbor (NN) method in the DS#5 dataset gave better results than the other methods (RMSE=0.14173  m, MAE=0.09729 m, NSE=0.98986, and R2=0.99011. On the other hand, it has been observed that, the GRNN method exhibited the best performance, on average, with RMSE=0.18539 m, MAE=0.13676 m, NSE=0.98229, and R2=0.98249.

Este estudio evalúa los métodos diferentes de predicción de ondulación geoide donde se incluye dos tipos de Redes Neuronales Artificiales -la red neuronal de base radial y la red neuronal de regresión generalizada- al igual que métodos convencionales donde se incluyen la regresión lineal múltiple y diez técnicas diferentes de interpolación. En este trabajo, la validación cruzada de K iteraciones se usó para evaluar el modelo y su comportamiento en un conjunto de datos independiente. Con este método de evaluación, cada grupo de números k tiene la posibilidad de dividirse entre datos de entrenamiento y datos de evaluación. El desempeño de los métodos se evaluó en términos de la raíz del error cuadrático medio (RMSE, del inglés root mean square error), el error absoluto medio (MAE, mean absolute error), el coeficiente de eficiencia Nash-Sutcliffe (NSE, Nash–Sutcliffe efficiency coefficient) y el coeficiente de correlación (R2, correlation coefficient) a través de indicadores gráficos. La evaluación del desempeño de los grupos de datos obtenidos con la validación cruzada se realizó en dos vías. Cuando el método que tiene el resultado de mínimo error es aceptado como el método más apropiado, el vecino natural ofrece mejores resultados que otros métodos (RMSE = 0.142 m, MAE = 0.097 m, NSE = 0.98986, and R2 = 0.99011). Por otro lado, se observó que en promedio la red neuronal de regresión generalizada presentó un mejor desempeño (RMSE = 0.185 m, MAE = 0.137 m, NSE = 0.98229, and R2 = 0.98249).

References

Akcin, H. & Celik, C. T. (2013). Performance of artificial neural networks on kriging method in modeling local geoid. Boletim de Ciências Geodésicas, 19(1), 84-97. DOI: https://doi.org/10.1590/S1982-21702013000100006 DOI: https://doi.org/10.1590/S1982-21702013000100006

Akyilmaz, O., Özlüdemir, M. T., Ayan, T. & Çelik, R. N. (2009). Soft computing methods for geoidal height transformation. Earth, Planets and Space, 61(7), 825-833. DOI: https://doi.org/10.1186/BF03353193 DOI: https://doi.org/10.1186/BF03353193

Albayrak, M., Özlüdemir, M. T., Aref, M. M. & Halicioglu, K. (2020). Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geodesy and Geodynamics, 11(3), 163-173. DOI: https://doi.org/10.1016/j.geog.2020.01.003 DOI: https://doi.org/10.1016/j.geog.2020.01.003

Broomhead, D. & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2(6), 568-576.

Cakir, L. & Konakoglu, B. (2019). The impact of data normalization on 2D coordinate transformation using GRNN. Geodestki Vestnik, 63(4), 541-553. DOI: https://doi.org/10.15292/geodetski-vestnik.2019.04.541-553 DOI: https://doi.org/10.15292/geodetski-vestnik.2019.04.541-553

Cakir, L. & Yilmaz, N. (2014). Polynomials, radial basis functions and multilayer perceptron neural network methods in local geoid determination with GPS/levelling. Measurement, 57, 148-153. DOI: https://doi.org/10.1016/j.measurement.2014.08.003 DOI: https://doi.org/10.1016/j.measurement.2014.08.003

Das, R. K., Samanta, S., Jana, S. K. & Rosa, R. (2018). Polynomial interpolation methods in development of local geoid model. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 265-271. DOI: https://doi.org/10.1016/j.ejrs.2017.03.002 DOI: https://doi.org/10.1016/j.ejrs.2017.03.002

Dawod, G. M. & Abdel-Aziz, T. M. (2020). Utilization of geographically weighted regression for geoid modelling in Egypt. Journal of Applied Geodesy, 14(1), 1-12. DOI: https://doi.org/10.1515/jag-2019-0009 DOI: https://doi.org/10.1515/jag-2019-0009

Doganalp, S. (2016). Geoid height computation in strip-area project by using least-squares collocation. Acta Geodynamica Geomaterialia, 13(2), 182. DOI: https://doi.org/10.13168/AGG.2015.0054 DOI: https://doi.org/10.13168/AGG.2015.0054

Doganalp, S. & Selvi, H. Z. (2015). Local geoid determination in strip area projects by using polynomials, least-squares collocation and radial basis functions. Measurement, 73, 429-438. DOI: https://doi.org/10.1016/j.measurement.2015.05.030 DOI: https://doi.org/10.1016/j.measurement.2015.05.030

Elshambaky, H. T. (2018). Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt. Journal of Applied Geodesy, 12(1), 29-43. DOI: https://doi.org/10.1515/jag-2017-0017 DOI: https://doi.org/10.1515/jag-2017-0017

Erol, B. & Çelik, R. N. (2004). Modelling local GPS/levelling geoid with the assessment of inverse distance weighting and geostatistical kriging methods, 20th ISPRS Congress, Technical Commission IV, Istanbul, Turkey, 76.

Erol, B. & Erol, S. (2012). GNSS in practical determination of regional heights. In: Shuanggen J. (Editor). Global navigation satellite systems: Signal, theory and applications, InTech, Shanghai, China, 127-160. DOI: https://doi.org/10.5772/28820 DOI: https://doi.org/10.5772/28820

Erol, B. & Erol, S. (2013). Learning-based computing techniques in geoid modeling for precise height transformation. Computers and Geosciences, 52, 95-107. DOI: https://doi.org/10.1016/j.cageo.2012.09.010 DOI: https://doi.org/10.1016/j.cageo.2012.09.010

Erol, B., Erol, S. & Çelik, R. N. (2008). Height transformation using regional geoids and GPS/levelling in Turkey. Survey Review, 40(307), 2-18. DOI: https://doi.org/10.1179/003962608X253394 DOI: https://doi.org/10.1179/003962608X253394

Erol, S. & Erol, B. (2021). A comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement, 173, 108623. DOI: https://doi.org/10.1016/j.measurement.2020.108623 DOI: https://doi.org/10.1016/j.measurement.2020.108623

Featherstone, W. E., Dentith, M. C. & Kirby, J. F. (1998). Strategies for the accurate determination of orthometric heights from GPS. Survey Review, 34(267), 278-296. DOI: https://doi.org/10.1179/sre.1998.34.267.278 DOI: https://doi.org/10.1179/sre.1998.34.267.278

Golden Software (2019). Surfer 17 User’s Guide, Technical Manual, Inc. Colorado, USA.

Hartman, E. J., Keeler, J. D. & Kowalski, J. M. (1990). Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation, 2(2), 210-215. DOI: https://doi.org/10.1162/neco.1990.2.2.210 DOI: https://doi.org/10.1162/neco.1990.2.2.210

Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall, Upper Saddle River, New Jersey.

Heiskanen, W. A. & Moritz, H. (1967). Physical Geodesy. WH Freeman, San Francisco. DOI: https://doi.org/10.1007/BF02525647

Kaloop, M. R., Rabah, M., Hu, J.W. & Zaki, A. (2018). Using advanced soft computing techniques for regional shoreline geoid model estimation and evaluation. Marine Georesources and Geotechnology, 36(6), 688-697. DOI: https://doi.org/10.1080/1064119X.2017.1370622 DOI: https://doi.org/10.1080/1064119X.2017.1370622

Kaloop, M. R., Zaki, A., Al-Ajami, H. & Rabah, M. (2020). Optimizing local geoid undulation model using GPS/levelling measurements and heuristic regression approaches. Survey Review, 52(375), 544-554. DOI: https://doi.org/10.1080/00396265.2019.1665615 DOI: https://doi.org/10.1080/00396265.2019.1665615

Karaaslan, Ö., Tanır Kayıkçı, E. & Aşık, Y. (2016). Comparison of local geoid height surfaces, in the province of Trabzon. Arabian Journal of Geosciences, 9(431), 1-12. DOI: https://doi.org/10.1007/s12517-016-2470-2 DOI: https://doi.org/10.1007/s12517-016-2470-2

Kavzoglu, T. & Saka, M. H. (2005). Modelling local GPS/levelling geoid undulations using artificial neural networks. Journal of Geodesy, 78(9), 520-527. DOI: https://doi.org/10.1007/s00190-004-0420-3 DOI: https://doi.org/10.1007/s00190-004-0420-3

Keckler, D. (1995). Surfer for Windows, Version 6 - User's Guide. Golden Software, Golden, CO, 511 pp.

Kohavi, R. (1995). A study of cross‐validation and bootstrap for accuracy estimation and model selection, 14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, 1137-1143.

Konakoglu, B. & Akar, A. (2021). Geoid undulation prediction using Gaussian Process Regression: A case study in a local region in Turkey. Acta Geodynamica et Geomaterialia, 18, 1(201), 15-28. DOI: https://doi.org/10.13168/AGG.2021.0001 DOI: https://doi.org/10.13168/AGG.2021.0001

Kotsakis, C. & Sideris, M. G. (1999). On the adjustment of combined GPS/levelling/geoid networks. Journal of Geodesy, 73(8), 412-421. DOI: https://doi.org/10.1007/s001900050261 DOI: https://doi.org/10.1007/s001900050261

Li, L., Xu, Y., Yan, L., Wang, S., Liu, G. & Liu, F. (2020). A regional NWP tropospheric delay inversion method based on a general regression neural network model. Sensors, 20(11), 3167. DOI: https://doi.org/10.3390/s20113167 DOI: https://doi.org/10.3390/s20113167

Ligas, M. & Kulczycki, M. (2018). Kriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling. Survey Review, 50(359), 155-162. DOI: https://doi.org/10.1080/00396265.2016.1247131 DOI: https://doi.org/10.1080/00396265.2016.1247131

Lin, L. S. (2007). Application of a back-propagation artificial neural network to regional grid-based geoid model generation using GPS and leveling data. Journal of Surveying Engineering, 133(2), 81-89. DOI: https://doi.org/10.1061/(ASCE)0733-9453(2007)133:2(81) DOI: https://doi.org/10.1061/(ASCE)0733-9453(2007)133:2(81)

Park, J. & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3(2), 246-257. DOI: https://doi.org/10.1162/neco.1991.3.2.246 DOI: https://doi.org/10.1162/neco.1991.3.2.246

Pikridas, C., Fotiou, A., Katsougiannopoulos, S. & Rossikopoulos, D. (2011). Estimation and evaluation of GPS geoid heights using an artificial neural network model. Applied Geomatics, (3), 183-187. DOI: https://doi.org/10.1007/s12518-011-0052-2 DOI: https://doi.org/10.1007/s12518-011-0052-2

Rabah, M. & Kaloop, M. (2013). The use of minimum curvature surface technique in geoid computation processing of Egypt. Arabian Journal of Geosciences, 6(4), 1263-1272. DOI: https://doi.org/10.1007/s12517-011-0418-0 DOI: https://doi.org/10.1007/s12517-011-0418-0

Rodriguez, J. D., Perez, A. & Lozano, J. A. (2009). Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 569-575. DOI: https://doi.org/10.1109/TPAMI.2009.187 DOI: https://doi.org/10.1109/TPAMI.2009.187

Şahin, M., Kaya, Y. & Uyar, M. (2013). Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Advances in Space Research, 51(5), 891-904. DOI: https://doi.org/10.1016/j.asr.2012.10.010 DOI: https://doi.org/10.1016/j.asr.2012.10.010

Seager, J., Collier, P. & Kirby, J. (1999). Modelling geoid undulations with an artificial neural network, International Joint Conference on Neural Networks, Washington, DC, USA, 3332-3335.

Seeber, G. (2003). Satellite geodesy: foundations, methods, and applications. Walter de Gruyter, Berlin, New York, 575 pp.

Singh, K. P., Basant, A., Malik, A. & Jain, G. (2009). Artificial neural network modeling of the river water quality-a case study. Ecological Modelling, 220(6), 888-895. DOI: https://doi.org/10.1016/j.ecolmodel.2009.01.004 DOI: https://doi.org/10.1016/j.ecolmodel.2009.01.004

Specht, D. F. (1993). The general regression neural network-rediscovered. Neural Networks, 6(7), 1033-1034. DOI: https://doi.org/10.1016/S0893-6080(09)80013-0 DOI: https://doi.org/10.1016/S0893-6080(09)80013-0

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. DOI: https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

Stopar, B., Ambrožič, T., Kuhar, M. & Turk, G. (2006). GPS-derived geoid using artificial neural network and least squares collocation. Survey Review, 38(300), 513-524. DOI: https://doi.org/10.1179/sre.2006.38.300.513 DOI: https://doi.org/10.1179/sre.2006.38.300.513

Tusat, E. (2011). A comparison of geoid height obtained with adaptive neural fuzzy inference systems and polynomial coefficients methods. International Journal of the Physical Sciences, 6(4), 789-795. DOI: https://doi.org/10.5897/IJPS11.027

Tusat, E. & Mikailsoy, F. (2018). An investigation of the criteria used to select the polynomial models employed in local GNSS/leveling geoid determination studies. Arabian Journal of Geosciences, 11(24), 801. DOI: https://doi.org/10.1007/s12517-018-4176-0 DOI: https://doi.org/10.1007/s12517-018-4176-0

Veronez, M. R., Florêncio de Souza, S., Matsuoka, M. T., Reinhardt, A. & Macedônio da Silva, R. (2011). Regional mapping of the geoid using GNSS (GPS) measurements and an artificial neural network. Remote Sensing, 3(4), 668-683. DOI: https://doi.org/10.3390/rs3040668 DOI: https://doi.org/10.3390/rs3040668

Yanalak, M. & Baykal, O. (2001). Transformation of ellipsoidal heights to local leveling heights. Journal of Surveying Engineering, 127(3), 90-103. DOI: https://doi.org/10.1061/(ASCE)0733-9453(2001)127:3(90) DOI: https://doi.org/10.1061/(ASCE)0733-9453(2001)127:3(90)

Yılmaz, M. (2010). Adaptive network based on fuzzy inference system estimates of geoid heights interpolation. Scientific Research and Essays, 5(16), 2148-2154. DOI: https://doi.org/10.5897/SRE.9000130

Yιlmaz, M. & Arslan, E. (2008). Effect of the type of membership function on geoid height modelling with fuzzy logic. Survey Review, 40(310), 379-391. DOI: https://doi.org/10.1179/003962608X325439 DOI: https://doi.org/10.1179/003962608X325439

Zaletnyik, P., Völgyesi, L. & Paláncz, B. (2004). Approach of the Hungarian geoid surface with sequence of neural networks, 20th ISPRS Congress, Istanbul, Turkey, 119–122.

Zhan-ji, Y. & Yong-qi, C. (1999). Determination of local geoid with geometric method: Case study. Journal of Surveying Engineering, 125(3), 136-146. DOI: https://doi.org/10.1061/(ASCE)0733-9453(1999)125:3(136) DOI: https://doi.org/10.1061/(ASCE)0733-9453(1999)125:3(136)

Zhong, D. (1997). Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. Journal of Geodesy, 71(9), 552-561. DOI: https://doi.org/10.1007/s001900050123 DOI: https://doi.org/10.1007/s001900050123

Ziggah, Y. Y., Youjian, H., Laari, P. B. & Hui, Z. (2017). Novel approach to improve geocentric translation model performance using artificial neural network technology. Boletim de Ciências Geodésicas, 23(1), 213-233. DOI: http://dx.doi.org/10.1590/S1982-21702017000100014 DOI: https://doi.org/10.1590/s1982-21702017000100014

Ziggah, Y. Y., Youjian, H., Tierra, A. R. & Laari, P. B. (2019). Coordinate transformation between global and local data based on artificial neural network with k-fold cross-validation in Ghana. Earth Sciences Research Journal, 23(1), 67-77. DOI: https://doi.org/10.15446/esrj.v23n1.63860 DOI: https://doi.org/10.15446/esrj.v23n1.63860

How to Cite

APA

Konakoglu, B. and Akar, A. (2022). Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth Sciences Research Journal, 25(4). https://doi.org/10.15446/esrj.v25n4.91195

ACM

[1]
Konakoglu, B. and Akar, A. 2022. Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth Sciences Research Journal. 25, 4 (Feb. 2022). DOI:https://doi.org/10.15446/esrj.v25n4.91195.

ACS

(1)
Konakoglu, B.; Akar, A. Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth sci. res. j. 2022, 25.

ABNT

KONAKOGLU, B.; AKAR, A. Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth Sciences Research Journal, [S. l.], v. 25, n. 4, 2022. DOI: 10.15446/esrj.v25n4.91195. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/91195. Acesso em: 16 jan. 2025.

Chicago

Konakoglu, Berkant, and Alper Akar. 2022. “Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study”. Earth Sciences Research Journal 25 (4). https://doi.org/10.15446/esrj.v25n4.91195.

Harvard

Konakoglu, B. and Akar, A. (2022) “Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study”, Earth Sciences Research Journal, 25(4). doi: 10.15446/esrj.v25n4.91195.

IEEE

[1]
B. Konakoglu and A. Akar, “Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study”, Earth sci. res. j., vol. 25, no. 4, Feb. 2022.

MLA

Konakoglu, B., and A. Akar. “Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study”. Earth Sciences Research Journal, vol. 25, no. 4, Feb. 2022, doi:10.15446/esrj.v25n4.91195.

Turabian

Konakoglu, Berkant, and Alper Akar. “Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study”. Earth Sciences Research Journal 25, no. 4 (February 7, 2022). Accessed January 16, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/91195.

Vancouver

1.
Konakoglu B, Akar A. Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth sci. res. j. [Internet]. 2022 Feb. 7 [cited 2025 Jan. 16];25(4). Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/91195

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Dilbarkhon Fazilova, Obidjon Arabov. (2023). Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan . Earth Sciences Research Journal, 27(2), p.85. https://doi.org/10.15446/esrj.v27n2.103801.

Dimensions

PlumX

Article abstract page views

254

Downloads

Download data is not yet available.