Published

2021-01-26

Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face

Proceso de evolución geológica, mecanismo y aplicación de capa de protección en minería de semicarbón y en pared de roca

DOI:

https://doi.org/10.15446/esrj.v24n4.91378

Keywords:

Semi-coal rock, Geological Evolution, Non-coal pillar, Distressed blind-zone, Gas extraction (en)
roca de semicarbón, evolución geológica, minería sin pilar, peligros de la zona ciega, extracción de gas (es)

Downloads

Authors

  • Xiaoping Xie School of Mines of China University of Mining & Technology, Xuzhou 221116, China
  • Xinqiu Fang College of Mining and Civil Engineering of Liupanshui Normal College, Liupanshui 553004, China
  • Minfu Liang College of Mining and Civil Engineering of Liupanshui Normal College, Liupanshui 553004, China
  • Dechun Ai School of Mines of China University of Mining & Technology, Xuzhou 221116, China

Under the influence of geological structure, the surrounding rock of semi-coal seam is easy to be loose and fractured, and the repairing rate is high. Therefore, it is of great theoretical and practical significance to study semi-coal seam mining's mechanism and control technology. In this paper, the geological evolution principle of the semi-coal seam is analyzed theoretically. The mechanic's relationship between the mining height of the semi-coal face and the lower coal seam's pressure relief is interpreted. The mechanism of eliminating bad blind areas in non-pillar mining of upper protective seam is analyzed. Through numerical simulation analysis, it is concluded that the expansion deformation rate of a protective layer increases linearly with the increase of mining thickness of the protective layer, and the width of undesirable blind zone of coal seam increases linearly with the rise of protective layer thickness. This paper puts forward the technology of non-pillar mining in the protective seam's semi-coal and rock face. Field industrial test results show that the technology achieves the overall pressure relief and reflection reduction of low permeability and high gas coal seams. The underlying 3 + 4 protective layer achieves the general pressure relief and reflection reduction of low permeability and high gas coal seams. Coalbed methane can be pre-drained up to 18 m3/min with a concentration of 90%.

Bajo la influencia de la estructura geológica, la roca que rodea la veta de semicarbón puede soltarse y fracturarse, y el índice de reparación es alto. Es de gran importancia teórica y práctica estudiar el mecanismo de minería de la veta de semicarbón y la tecnología de control. En este artículo el principio de la evolución geológica de la veta de semicarbón se analiza teóricamente. Además, se interpreta la relación mecánica entre el peso de la minería en la pared y el alivio en la presión de la parte baja de la veta. También se analiza el mecanismo de eliminar las áreas ciegas en la minería sin pilares de la veta superior protectora. A través del análisis de simulación numérica se concluye que el índice de deformación por expansión de una capa de protección se incrementa linealmente con el aumento del grosor de la capa de protección, y el ancho de la indeseable zona ciega en la veta de carbón se incrementa linealmente también con el incremento en el grosor de la capa de protección. Este trabajo ofrece una tecnología en minería sin pilar de la capa de protección en la veta de semicarbón y en la pared de la roca. Los resultados de evaluaciones de campo industriales muestran que esta tecnología logra un alivio general en la presión y en la reducción del reflejo en vetas de baja permeabilidad y de carbón con alto índice de gas. La capa de protección 3 + 4 logra el alivio en la presión general y en la reducción del reflejo en vetas de baja permeabilidad y de carbón con alto índice de gas. El metano en capas de carbón puede ser drenado previamente en hasta 18 m3/min con una concentración del 90 por ciento.

References

Abubakary, S., Micah, N., & Jenny, G. (2015). Evaluation of the impact of commodity price change on mine plan of underground mining. International Journal of Mining Science and Technology, 25, 375-382.

Bustin, R. M., & Clarkson, C. R. (1998). Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology, 38, 3-26.

Chen, Y., Bai, J. B., Wang, X. Y., Ma, S. Q., & Xu, Y. (2003). Support technology research and application inside roadway of gob-side entry retaining. Journal of China Coal Society, 37, 903-910.

Chen, D., Pan, Z., Shi, J. Q., Si, G., Ye, Z., & Zhang, J. (2016). A novel approach for modelling coal permeability during transition from elastic to post-failure state using a modified logistic growth function. International Journal of Coal Geology, 163, 132-139.

Cheng, Y. P., Yu, Q. X., & Yuan, L. (2003). Gas extraction techniques and movement properties of long distance and pressure relief rock mass upon exploited coal seam. Journal of Liaoning Technical University, 22, 483-486.

Cheng, Y. H., Jiang, F. X., & Lin, J. K. (2012). Experimental study on gob-side entry retaining by roadside flexible packing under hard roof. Journal of Mining and Safety Engineering, 29, 757-761.

He, M. C., Chen, S. Y., Guo, Z. B., Yang, J., Gao, Y. B. (2017). Control of surrounding rock structure for gob-side entry retaing by cutting roof to release pressure and its engineering application. Journal of China University of Mining and Technology, 46, 959-969.

Jiang, J. P., Dai, J., Li, Q. H. (2013). Failure law and application of complex structure thin coal seam mining face. Journal of China Coal Society, 38, 1912-1916.

Khademalhoseiny, M. S., Nadoushan, M. A., & Radnezhad, H. (2017). Site selection for landfill gas extraction plant by fuzzy analytic hierarchy process and fuzzy analytic network process in the city of Najafabad, Iran. Energy & Environment, 28(7), 763-774.

Li, D. Q. (2014). Underground hydraulic mining of thin sub-layer as protective coal seam in coal mines. International Journal of Rock Mechanics and Mining Sciences, 67, 145-154.

Li, L., Bai, J. B., Xu, Y., Xiao, T. Q., Wang, X. Y., & Zhang, K. X. (2011). Research on rock control of roadway with complex roof driven along goaf. Journal of Mining and Safety Engineering, 28(3), 376-383.

Liu, H. B., Cheng, Y. P., Song, J. C., Shang, Z. J., & Wang, L. (2009). Pressure relief, gas drainage and deformation effects on an overlying coal seam induced by drilling an extra-thin protective coal seam. International Journal of Mining Science and Technology, 19, 724-729.

Liu, Y. K., Zhou, F. B., Liu, Y., Liu, C., & Hu, S. Y. (2011). Experimental and numerical investigation on the deformation of overlying coal seams above double-seam extraction for controlling coal mine methane emissions. International Journal of Coal Geology, 87, 139-149.

Liu, H. Y., Cheng, Y. P., Chen, H. D., Mou, J. H., & Kong, S. L. (2013). Characteristics of mining gas channel expansion in the remote overlying strata and its control of gas flow. International Journal of Mining Science and Technology, 23, 481-487.

Ma, L. Q., Zhang, D. S., Chen, T., & Fang, G. W. (2007). Study on packing body supporting resistance of enter-in packing for in-situ gob-side entry retaining in fully-mechanized top-coal caving mining face. Chinese Journal of Mechanical Engineering, 26, 544-550.

Rosa, M., Barboza, E. G., Menegon, B. S., Frota, P. C., & Anoni, R. (2016). Geological evolution and inundation hazard: an analysis through geotechnologies. Journal of Coastal Research, (752), 1227-1231.

Wu, C. F., Zeng, Y., & Qin, Y. (2004). Present situation, application, and development of simultaneous extraction of coal and gas. Journal of China University of Mining and Technology, 33, 137-140.

Yuan, L. (2008a). Gas distribution of the mined-out side and extraction technology of first mined key seam relief-mining in gassy multi-seams of low permeability. Journal of Mining and Safety Engineering, 3, 1-7.

Yuan, L. (2008b). The technique of coal mining and gas extraction by roadway retaining and borehole drilling. Journal of China Coal Society, 33, 898-902.

Zhou, H., Zhang, R., Cheng, Y., Dai, H., Ge, C., & Chen, J. (2015). Methane and coal exploitation strategy of highly outburst-prone coal seam configurations. Journal of Natural Gas Science and Engineering, 23, 63-69.

Zhou, F., Xia, T., Wang, X., Zhang, Y., Sun, Y., & Liu, J. (2016). Recent developments in coal mine methane extraction and utilization in China: a review. Journal of Natural Gas Science and Engineering, 31, 437-458.

How to Cite

APA

Xie, X. ., Fang, X. ., Liang, M. . and Ai, D. . (2021). Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face. Earth Sciences Research Journal, 24(4), 499–506. https://doi.org/10.15446/esrj.v24n4.91378

ACM

[1]
Xie, X. , Fang, X. , Liang, M. and Ai, D. 2021. Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face. Earth Sciences Research Journal. 24, 4 (Jan. 2021), 499–506. DOI:https://doi.org/10.15446/esrj.v24n4.91378.

ACS

(1)
Xie, X. .; Fang, X. .; Liang, M. .; Ai, D. . Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face. Earth sci. res. j. 2021, 24, 499-506.

ABNT

XIE, X. .; FANG, X. .; LIANG, M. .; AI, D. . Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face. Earth Sciences Research Journal, [S. l.], v. 24, n. 4, p. 499–506, 2021. DOI: 10.15446/esrj.v24n4.91378. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/91378. Acesso em: 28 mar. 2025.

Chicago

Xie, Xiaoping, Xinqiu Fang, Minfu Liang, and Dechun Ai. 2021. “Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face”. Earth Sciences Research Journal 24 (4):499-506. https://doi.org/10.15446/esrj.v24n4.91378.

Harvard

Xie, X. ., Fang, X. ., Liang, M. . and Ai, D. . (2021) “Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face”, Earth Sciences Research Journal, 24(4), pp. 499–506. doi: 10.15446/esrj.v24n4.91378.

IEEE

[1]
X. . Xie, X. . Fang, M. . Liang, and D. . Ai, “Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face”, Earth sci. res. j., vol. 24, no. 4, pp. 499–506, Jan. 2021.

MLA

Xie, X. ., X. . Fang, M. . Liang, and D. . Ai. “Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face”. Earth Sciences Research Journal, vol. 24, no. 4, Jan. 2021, pp. 499-06, doi:10.15446/esrj.v24n4.91378.

Turabian

Xie, Xiaoping, Xinqiu Fang, Minfu Liang, and Dechun Ai. “Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face”. Earth Sciences Research Journal 24, no. 4 (January 26, 2021): 499–506. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/91378.

Vancouver

1.
Xie X, Fang X, Liang M, Ai D. Geological evolution process, mechanism, and application of protective layer in semi-coal and rock face. Earth sci. res. j. [Internet]. 2021 Jan. 26 [cited 2025 Mar. 28];24(4):499-506. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/91378

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Yuqi Shang, Yang Wang, Lin Zhang, Guiyi Wu, Dezhong Kong, Pengfei Zhang, Tongping Jia. (2024). Impact of Lower Protective Coal Seam Mining on Overlying Strata: Deformation, Pressure Relief, and Permeability Enhancement. International Journal of Geomechanics, 24(9) https://doi.org/10.1061/IJGNAI.GMENG-9411.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 2

Article abstract page views

234

Downloads