Published

2021-01-26

Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence

Análisis y métodos de evaluación de las características de subsidencia sísmica en suelos poco compactos y subsidencia sísmica de campos

DOI:

https://doi.org/10.15446/esrj.v24n4.91593

Keywords:

Loess, Triaxial test, Seismic subsidence changes, Depth of soil layer, Subsidence extent (en)
Suelos poco compactos, resistencia triaxial, cambios de subsidencia sísmica, profundidad de capas de suelo, subsidencia extendida (es)

Downloads

Authors

  • Xiaotong Yan Institute of Engineering mechanics. CEA, Heilongjiang, China
  • Shun Wang Shenyang Jianzhu University, Liaoning, China
  • Ningwei Wang Institute of Engineering mechanics. CEA, Heilongjiang, China

The objective of this research is to analyze the dynamic degeneration of loess and the evaluation method of field seismic subsidence. In this study, Q3 loess is taken as the research object, and the dynamic properties of loess with 10%, 20%, 30% and 35% moisture content are tested by triaxial experiment. In addition, seismic subsidence characteristics of loess with dry densities of 1.4g/cm3, 1.6g/cm3, and 1.8g/cm3 and consolidation stress ratios of 1.0, 1.2, 1.4, and 1.6 are analyzed. Then the simplified seismic subsidence estimation method is used to calculate the relationship between seismic subsidence coefficients at different soil depth in one dimensional field, cycle times, and subsidence depth. The results show that the higher the water content of loess is, the greater the change of seismic subsidence appears. The larger the dry density of loess is, the smaller the change degree of seismic subsidence appears. The larger the consolidation stress ratio is, the greater the change of seismic subsidence occurs in loess. When the depth of soil reaches 9.5m, the maximum seismic subsidence coefficient can reach 0.8%. When the depth of soil layer is 10m, the degree of seismic subsidence is the largest. When the depth of soil layer is 12~16m, the settlement depth caused by earthquake subsidence is small. While the depth of soil layer is 8~12m, the settlement degree is large.

El objetivo de esta investigación es analizar la dinámica de degeneración de suelos poco compactos y el método de evaluación de subsidencia del campo sísmico. En este estudio, suelos poco compactos tipo Q3 fueron objeto de investigación, y las propiedades dinámicas de estos suelos con 10, 20, 30 y 35 por ciento de contenido de húmedad fueron evaluadas en experimentos triaxiales. Además, se analizaron las características de subsidencia sísmica de los suelos poco compactos con densidades secas de 1.4g/cm3, 1.6g/cm3, y 1.8g/cm3 y un índice de consolidación de esfuerzo de 1.0, 1.2, 1.4 y 1.6. Luego, el método de estimación de la subsidencia sísmica simplificada se utilizó para calcular la relación entre los coeficientes de subsidencia sísmica en diferentes profundidades en un campo dimensional, los tiempos del ciclo y la profundidad de subsidencia. Los resultados muestran que entre más alto sea el contenido de agua en los suelos poco compactos es mayor el cambio de subsidencia sismica. Y que entre mayor sea la densidad seca de estos suelos, más pequeño es el grado de cambio de la subsidencia sísmica. Y, finalmente, cuando el índice de consolidación de esfuerzo es mayor también será mayor el cambio de subsidencia sísmica que ocurre en los suelos poco compactos. Cuando la profundidad del suelo alcanza los 9.5 metros, el coeficiente de subsidencia sísimica puede alcanzar el 0.8 por ciento. Cuando la profundidad de la capa del suelo es de 10 metros, el grado de subsidencia sísmica es mayor. Cuando la profundidad de la capa del suelo es entre 12 y 16 metros, el asentamiento causado por la subsidencia del movimiento de tierra es menor. Mientras la profundidad de la capa del suelo se encuentre entre 8 y 12 metros, el grado de asentamiento es mayor.

References

Anbazhagan, P., Uday, A., Moustafa, S. S. R., & Alarifi, N. (2017). Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin. Journal of the Geological Society of India, 89(4), 398-406.

Araújo, M., & Castro, J. M. (2017). Simplified procedure for the estimation of local inelastic deformation demands for seismic performance assessment of buildings. Earthquake Engineering & Structural Dynamics, 46(3), 491-514. DOI: https://doi.org/10.1002/eqe.2825

Chen, T., Ma, W., & Wang, J. (2017). Numerical Analysis of Ground Motion Effects in the Loess Regions of Western China. Shock & Vibration, 3, 1-9. DOI: https://doi.org/10.1155/2017/1484015

Cheng, X. S., Ma, L., Yu, D. P., Fan, J., & Li, D. (2018). Seismic stability of loess tunnels under the effects of rain seepage and a train load. Science China Technological Sciences, 61(5), 735-747.

Drzewiecki, J., & Piernikarczyk, A. (2017). The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event. Journal of Sustainable Mining, 16(1), 1-7.

Gao, G., Nie, C., & Shi, C. (2017). Seismic subsidence of sand ground subject to multidirectional earthquake load. Journal of Harbin Engineering University, 38(7), 1100-1106.

Hao, L., Meng, J., Zhang, Y., & Yang, L. (2018). Pliocene seismic stratigraphy and deep-water sedimentation in the Qiongdongnan Basin, South China Sea: Source-to-sink systems and hydrocarbon accumulation significance. Geological Journal, 54(1), 392-408. DOI: https://doi.org/10.1002/gj.3188

Liu, P., Lian, P., Zhang, M., He, B., & Dou, L. (2017). Dynamic Characteristics of a Building with Seismic Joints Based on Ambient Vibration. Journal of Hunan University, 44(1), 95-101. DOI: 10.16339/j.cnki.hdxbzkb.2017.01.012

Qiu, J., Wang, X., Lai, J., & Wang, J. (2018). Response characteristics and preventions for seismic subsidence of loess in Northwest China. Natural Hazards, 92(7), 1-27.

Sarhosis, V., Milani, G., Formisano, A., & Fabbrocino, F. (2018). Evaluation of different approaches for the estimation of the seismic vulnerability of masonry towers. Bulletin of Earthquake Engineering, 3–4, 1-35.

Song, B., Tsinaris, A., & Anastasiadis, A. (2017). Small-strain stiffness and damping of Lanzhou loess. Soil Dynamics & Earthquake Engineering, 95, 96-105.

Wang, Y., Gang, T., & Yu, L. (2017). The effect of explosion parameters on seismic source wavelet calculation and its characteristics. Journal of Applied Geophysics, 145.

Xu, J. S., & Yang, X. L. (2017). Effects of seismic force and pore water pressure on three dimensional slope stability in nonhomogeneous and anisotropic soil. Ksce Journal of Civil Engineering, 2, 1-10.

How to Cite

APA

Yan, X. ., Wang, S. and Wang, N. (2021). Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence. Earth Sciences Research Journal, 24(4), 485–490. https://doi.org/10.15446/esrj.v24n4.91593

ACM

[1]
Yan, X. , Wang, S. and Wang, N. 2021. Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence. Earth Sciences Research Journal. 24, 4 (Jan. 2021), 485–490. DOI:https://doi.org/10.15446/esrj.v24n4.91593.

ACS

(1)
Yan, X. .; Wang, S.; Wang, N. Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence. Earth sci. res. j. 2021, 24, 485-490.

ABNT

YAN, X. .; WANG, S.; WANG, N. Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence. Earth Sciences Research Journal, [S. l.], v. 24, n. 4, p. 485–490, 2021. DOI: 10.15446/esrj.v24n4.91593. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/91593. Acesso em: 26 sep. 2024.

Chicago

Yan, Xiaotong, Shun Wang, and Ningwei Wang. 2021. “Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence”. Earth Sciences Research Journal 24 (4):485-90. https://doi.org/10.15446/esrj.v24n4.91593.

Harvard

Yan, X. ., Wang, S. and Wang, N. (2021) “Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence”, Earth Sciences Research Journal, 24(4), pp. 485–490. doi: 10.15446/esrj.v24n4.91593.

IEEE

[1]
X. . Yan, S. Wang, and N. Wang, “Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence”, Earth sci. res. j., vol. 24, no. 4, pp. 485–490, Jan. 2021.

MLA

Yan, X. ., S. Wang, and N. Wang. “Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence”. Earth Sciences Research Journal, vol. 24, no. 4, Jan. 2021, pp. 485-90, doi:10.15446/esrj.v24n4.91593.

Turabian

Yan, Xiaotong, Shun Wang, and Ningwei Wang. “Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence”. Earth Sciences Research Journal 24, no. 4 (January 26, 2021): 485–490. Accessed September 26, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/91593.

Vancouver

1.
Yan X, Wang S, Wang N. Analysis and Evaluation Methods of Seismic Subsidence Characteristics of Loess and Field Seismic Subsidence. Earth sci. res. j. [Internet]. 2021 Jan. 26 [cited 2024 Sep. 26];24(4):485-90. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/91593

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

226

Downloads

Download data is not yet available.