Published
Evaluation algorithm of alhagi sparsifolia desertification control under different irrigation amounts
Algoritmo de evaluación para el control de la desertificación del alhagi sparsifolia bajo diferentes cantidades de riego
DOI:
https://doi.org/10.15446/esrj.v24n4.91626Keywords:
Irrigation amount, Alhagi sparsifolia, Desertification, Control, Regression analysis (en)Cantidad de riego, alhagi sparsifolia, desertificación, análisis de regresión (es)
Downloads
Desertification control is an important issue that must be considered in modern society. In order to effectively improve the accuracy and practicability of the evaluation algorithm of desertification control effect, the Alhagi sparsifolia index under different irrigation amount was taken as the research object, and the evaluation algorithm of desertification control effect was proposed. In the “vegetation-sandstorm-soil” index system, a number of indexes were selected according to the core environmental parameters of Alhagi sparsifolia and grassland desertification. And the analytic hierarchy process, remote sensing, geographic information system, and landscape technology were used to assign index weights of desertification control capacity, which were calculated by multiple discriminant matrices. Finally, the data regression analysis was performed based on remote sensing and computer image information screening and processing to determine the final evaluation results. The experimental data show that the true positive rate of the algorithm in this paper is between 160 and 200, which is within a large range of advantages, indicating that the overall evaluation accuracy of the algorithm is high and the evaluation effect is perfect.
El control de la desertificación es un tema importante que debe considerarse en la sociedad moderna. Con el fin de mejorar efectivamente la precisión y la viabilidad de un algoritmo de evaluación del efecto de control de la desertificación se tomó como objeto de investigación el índice del alhagi sparsifolia con diferentes cantidades de riego. En el sistema de índices “vegetación-tormenta de arena-suelo” se seleccionaron varios índices de acuerdo con los parámetros ambientales básicos del alhagi sparsifolia y la desertificación de los pastizales. Se utilizó el proceso de jerarquía analítica, la teledetección, el sistema de información geográfica y la tecnología del paisaje para asignar los índices de ponderación de la capacidad de control de la desertificación, los cuales se calcularon mediante matrices discriminantes múltiples. Finalmente, el análisis de regresión de datos se realizó con base en la detección y el procesamiento de información de imágenes de computadora y detección remota para determinar los resultados finales de la evaluación. Los datos experimentales muestran que la tasa de verdaderos positivos del algoritmo en este artículo está entre 160 y 200, lo que se encuentra dentro de una amplia gama de ventajas y que indica que la precisión de evaluación general del algoritmo es alta y el efecto de evaluación es perfecto.
References
Ajaj, Q. M., Pradhan, B., Noori, A. M., & Jebur, M. N. (2017). Spatial Monitoring of Desertification Extent in Western Iraq using Landsat Images and GIS. Land Degradation & Development, 28(85), 7-8.
Dai, Q., Peng, X., Zhi, Y., & Zhao, L. (2017). Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area. Catena, 152(17), 218-226.
Guan, P., Zhang, X., Yu, J., Cheng, Y., Li, Q., Andriuzzi, W. S., & Liang, W. (2018). Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biology & Biochemistry, 116(10), 82-90.
Kang, S. (2018). Prevention and Control Mode of Desertification in China's State Energy Group Shendong Mining Area with Annual Coal Output of 200 Million Tons. Meteorological & Environmental Research, 9(02), 27-33
Lan, S., Zhang, Q., He, Q., Yangm H., & Hu, C. (2018). Resource utilization of microalgae from biological soil crusts: Biodiesel production associated with desertification control. Biomass & Bioenergy, 116(3), 189-197.
Meng, Z., Dang, X., Yong, G., Ren, X., Ding, Y., & Wang, M. (2018). Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. Journal of Arid Land, 10(4), 1-14.
Peng, X., Dai, Q., Li, C., & Zhao, L. (2018). Role of underground fissure flow in near-surface rainfall-runoff process on a rock mantled slope in the karst rocky desertification area. Engineering Geology, 243(58), 10-17.
Qiang, C., Zeng, Y., Huang, C., Su, J., Sun, Z., Zhang, Q., & Liu, Y. (2018). Sophora davidii: A Native Shrub Used for Rocky Desertification Control and Development. Meteorological & Environmental Research, 9(2), 24-26.
Qiang, L., Pu, J., Ni, H., Du, H. M., Qi, X. K., Wang, L., & Yang, H. (2017). A Research Approach for Ecological, Environmental and Geological Differentiation of Rocky Desertification and Its Driving Mechanism in Karst Graben Basin. Advances in Earth Science, 32(9), 19-85
Rosen, A. M., Hart, T. C., Farquhar, J., Schneider, J. S., & Yadmaa, T. (2019). Holocene vegetation cycles, land-use, and human adaptations to desertification in the Gobi Desert of Mongolia. Vegetation History and Archaeobotany, 5(10), 95-98.
Sherratt, J, & Synodinos, A. (2017) Vegetation patterns and desertification waves in semi-arid environments: Mathematical models based on local facilitation in plants. Discrete and Continuous Dynamical Systems - Series B, (DCDS-B) 17(8), 2815-2827.
Tang, Z., An, H., Zhu, G., |& Shangguan, Z. (2018). Beta diversity diminishes in a chronosequence of desertification in a desert steppe. Land Degradation & Development, 29(3), 35-39.
Wei, X. X. (2017). Soil nutrient content and the activities of soil enzymes during the desertification restoration process to the east of Qinghai Lake. Pratacultural Science, 21(14), 13.
Yang, W., Tao, W., Wei, F., Wei, L., & Yanli, L. (2017) The Theory and Progress of Sand Control with Low Coverage. Journal of Desert Research, 3(9), 109-805
Zhang, C. L., Li, Q., Shen, Y. P., Zhou, N., Wang, X. S., Li, J., & Jia, W. R. (2018). Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Science of the Total Environment, 2(17), 619-620.
Zhang, W., Yu, X., Li, M., Lang, D., Zhang, X., & Xie, Z. (2018). Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Protection, 107(3), 1-11.
Zhao, Y., Ding, G., Gao, G.., & Le, P. (2019). Regionalization for Aeolian Desertification Control in the Mu Us Sandy Land Region, China. Journal of Desert Research, 9(15), 4-6.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Huishi Du, Jingfa Wang, Cheng Han. (2022). High-precision remote sensing mapping of aeolian sand landforms based on deep learning algorithms. Open Geosciences, 14(1), p.224. https://doi.org/10.1515/geo-2022-0351.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.