Published

2021-01-26

High-precision GPS measurement method without geographical restrictions using crowd-sensing technology

Método de medición GPS de alta precisión sin restricciones geográficas con tecnología de detección de multitudes

DOI:

https://doi.org/10.15446/esrj.v24n4.92151

Keywords:

Crowd-sensing Technology, Geographical Location,, Limitation, High Precision, Global Positioning System, Measurement (en)
Tecnología de detección de multitudes, ubicación geográfica, limitación, alta precisión, Sistema de Posicionamiento Global, medición (es)

Downloads

Authors

  • Yunxiang Zhang College of Information Science & Electronic Technology, Jiamusi University, Jiamusi
  • Bin Wang College of Information Science & Electronic Technology, Jiamusi University, Jiamusi
  • Lei Zhang College of Information Science & Electronic Technology, Jiamusi University, Jiamusi

In order to improve the flexibility of GPS measurement, a high-precision GPS measurement method that is not restricted by the geographical location under crowd-sensing technology was proposed. The performance of the crowdsensing network was improved through a regular hexagon-based crowd-smart big data sensing network deployment mechanism. The GPS /SINS/DR fast and high-precision combined measurement methods were used to achieve high-precision measurement without geographical restrictions. It has been verified that the proposed method in this paper has much better stability in the deployment strategy of a regular hexagon than that of the square. The proposed method can achieve fast acquisition of satellite signals and high-precision positioning, and its measurement accuracy in the low-latitude city and high-latitude city is higher than the online measurement method based on Google Earth, indicating that it has significant application value.

Para mejorar la flexibilidad de la medición GPS se propuso un método de medición GPS de alta precisión que no está restringido por la ubicación geográfica y que se ejecuta bajo tecnología de detección de multitudes. El rendimiento de la red de detección de multitudes se mejoró a través de un mecanismo regular de implementación de redes de detección de macrodatos basado en hexágonos. Se utilizaron los métodos de medición combinados GPS/SINS/DR rápidos para lograr mediciones de alta precisión sin restricciones geográficas. Se ha comprobado que el método propuesto en este trabajo tiene una estabilidad mucho mejor en la estrategia de despliegue del hexágono regular que la del cuadrado. El método propuesto puede lograr una rápida adquisición de señales de satélite y un posicionamiento de alta precisión, y su precisión de medición en ciudades de baja latitud y ciudades de alta latitud es mayor que el método de medición en línea basado en Google Earth, lo que indica que tiene un valor de aplicación significativo.

References

Cai, A. H., He, J. W., & Wang, P. (2016). Experiment and Error Analysis of Path Planning for Sonobuoy Array Deployment. Journal of China Academy of Electronics and Information Technology, 11, 21-24.

Chang, H. K., Sun, Y. K., & Chan, G. P. (2017). An Adaptive Complex-EKF-Based DOA Estimation for GPS Spoofing Detection. IET Signal Processing, 12, 174-181.

Coco, D. S., Gaussiran, T. L., & Coker, C. (2016). Passive detection of sporadic E using GPS phase measurements. Radio Science, 30, 1869-1874.

Dube, P., Bernard, J. E., & Gertsvolf, M. (2017). Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second. Metrologia, 54, 290-298.

Gao, L. (2018). Urban Strip Road Landscape Sharp Feature Extraction Integrity Optimization Simulation. Computer Simulation, 7, 261-264.

Gao, R. M., Yang, W. J., & Dai, Q. (2018). Characteristic Polynomials of Graphical Arrangements Corresponding to Wheel Graphs and Join Graphs. Journal of Jilin University (Science Edition), 56, 859-863.

Golsorkhi, M. S., Lu, D., & Guerrero, J. M. (2016). A GPS-based decentralized control method for islanded microgrids. IEEE Transactions on Power Electronics, 32(2):1-1.

Gu, Y., Yuan, L., Fan, D., You, W., & Su, Y. (2016). Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models. Advances in Space Research, 59, 88-102.

Hoang, G. M., Denis, B., Harri, J., & Slock, D. T. M. (2016). Breaking the gridlock of spatial correlations in GPS-aided IEEE 802.11p-based cooperative positioning. IEEE Transactions on Vehicular Technology, 65, 9554-9569.

Hsueh Y. L., & Chen, H. C. (2017). Map Matching for Low-Sampling-Rate GPS Trajectories by Exploring Real-time Moving Directions. Information Sciences, 434, 55-69.

Kugler, L. (2017). Why GPS spoofing is a threat to companies, countries. Communications of the Acm, 60, 18-19.

Li, X., & Xu, Q. (2016). A Reliable Fusion Positioning Strategy for Land Vehicles in GPS-Denied Environments Based on Low-Cost Sensors. IEEE Transactions on Industrial Electronics, 99, 1-1.

Li, H., Guo, Z. Y., Liu, C., & Zhao, Y. (2019). Stability Improvement Method for Cascaded DC-DC Converters with Additional Inductor Current Linear Feedback Control. Journal of Power Supply, 17, 103-110.

Li, Z., Filev, D. P., Kolmanovsky, I., Atkins, E., & Lu, J. (2016). A New Clustering Algorithm for Processing GPS-Based Road Anomaly Reports With a Mahalanobis Distance. IEEE Transactions on Intelligent Transportation Systems, 99, 1-9.

Liu, X. L.,Chang, J. C., & Liu, R. N. (2107). Synthesis method of initial noise samples of oil pump cavitation fault based on characteristic frequency analysis. Automation & Instrumentation, 12, 62-164.

Lowe, S. T., LaBrecque, J. L., Zuffada, C., Romans, L. J., Young, L. E., & Hajj, G. A. (2016). First spaceborne observation of an Earth-reflected GPS signal. Radio Science, 37, 7-1-7-28.

Peyret, M., Djamour, Y., Hessami, K., Regard, V., Bellier, O., Vernant, P., Daignieres, M., Nankali, H., Van Gorp, S., Goudarzi, M., Chery, J., Bayer, R., & Rigoulay, M. (2018). Present-day strain distribution across the Minab-Zendan-Palami fault system from dense GPS transects. Geophysical Journal International, 179, 751-762.

Zhang, D. H., Xiao, Z., Igarashi, K., & Ma, G. Y. (2016). GPS-derived ionospheric total electron content response to a solar flare that occurred on 14 July 2000. Radio Science, 37, 19-1-19-11.

Zhu, Z. G., He, B. B., & Xue, R. (2018). Image feature recognition method for dangerous situation in intelligent substation. Chinese Journal of Power Sources, 42, 597-600.

How to Cite

APA

Zhang, Y. ., Wang, B. and Zhang, L. (2021). High-precision GPS measurement method without geographical restrictions using crowd-sensing technology. Earth Sciences Research Journal, 24(4), 491–497. https://doi.org/10.15446/esrj.v24n4.92151

ACM

[1]
Zhang, Y. , Wang, B. and Zhang, L. 2021. High-precision GPS measurement method without geographical restrictions using crowd-sensing technology. Earth Sciences Research Journal. 24, 4 (Jan. 2021), 491–497. DOI:https://doi.org/10.15446/esrj.v24n4.92151.

ACS

(1)
Zhang, Y. .; Wang, B.; Zhang, L. High-precision GPS measurement method without geographical restrictions using crowd-sensing technology. Earth sci. res. j. 2021, 24, 491-497.

ABNT

ZHANG, Y. .; WANG, B.; ZHANG, L. High-precision GPS measurement method without geographical restrictions using crowd-sensing technology. Earth Sciences Research Journal, [S. l.], v. 24, n. 4, p. 491–497, 2021. DOI: 10.15446/esrj.v24n4.92151. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/92151. Acesso em: 26 sep. 2024.

Chicago

Zhang, Yunxiang, Bin Wang, and Lei Zhang. 2021. “High-precision GPS measurement method without geographical restrictions using crowd-sensing technology”. Earth Sciences Research Journal 24 (4):491-97. https://doi.org/10.15446/esrj.v24n4.92151.

Harvard

Zhang, Y. ., Wang, B. and Zhang, L. (2021) “High-precision GPS measurement method without geographical restrictions using crowd-sensing technology”, Earth Sciences Research Journal, 24(4), pp. 491–497. doi: 10.15446/esrj.v24n4.92151.

IEEE

[1]
Y. . Zhang, B. Wang, and L. Zhang, “High-precision GPS measurement method without geographical restrictions using crowd-sensing technology”, Earth sci. res. j., vol. 24, no. 4, pp. 491–497, Jan. 2021.

MLA

Zhang, Y. ., B. Wang, and L. Zhang. “High-precision GPS measurement method without geographical restrictions using crowd-sensing technology”. Earth Sciences Research Journal, vol. 24, no. 4, Jan. 2021, pp. 491-7, doi:10.15446/esrj.v24n4.92151.

Turabian

Zhang, Yunxiang, Bin Wang, and Lei Zhang. “High-precision GPS measurement method without geographical restrictions using crowd-sensing technology”. Earth Sciences Research Journal 24, no. 4 (January 26, 2021): 491–497. Accessed September 26, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/92151.

Vancouver

1.
Zhang Y, Wang B, Zhang L. High-precision GPS measurement method without geographical restrictions using crowd-sensing technology. Earth sci. res. j. [Internet]. 2021 Jan. 26 [cited 2024 Sep. 26];24(4):491-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/92151

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Xu Chen, Yufei Du, Xiangyu Sun, Zezhong Xu, Yuriy S. Shmaliy, Yougang Sun, Habib Zaidi, Hongying Meng, Hoshang Kolivand, Jianping Luo, Mamoun Alazab. (2023). A vehicle trajectory collection and query system based on crowd sensing. Fifth International Conference on Artificial Intelligence and Computer Science (AICS 2023). , p.112. https://doi.org/10.1117/12.3009547.

2. Xuemei Zhan, Zhong Hua Mu, Rajeev Kumar, Mohammad Shabaz. (2021). Research on speed sensor fusion of urban rail transit train speed ranging based on deep learning. Nonlinear Engineering, 10(1), p.363. https://doi.org/10.1515/nleng-2021-0028.

3. Xianyong Zhang, Baofa Peng, Lulu Zhou, Chunyang Lu, Yali Wang, Rui Liu, Hui Xiang. (2024). Tourism development potential and obstacle factors of cultural heritage: Evidence from traditional music in Xiangxi. Journal of Geographical Sciences, 34(2), p.309. https://doi.org/10.1007/s11442-024-2206-2.

Dimensions

PlumX

Article abstract page views

271

Downloads

Download data is not yet available.