Published
Destruction process and restoration countermeasures of the ecological environment of a comprehensive geological structure
Proceso de destrucción y contramedidas de restauración del entorno ecológico de una estructura geológica integral
DOI:
https://doi.org/10.15446/esrj.v24n4.92387Keywords:
Geological structure, Ecological environment, Destruction, Restoration countermeasures (en)Estructura geológica, Entorno ecológico, Destrucción, Contramedidas de restauración (es)
Downloads
Aiming at the destruction of the ecological environment of the comprehensive geological structure, the traditional restoration countermeasures have the problems of high input cost and low economic benefits. For this reason, the ecological environment destruction process and restoration countermeasures of the comprehensive geological structure were proposed. The common geological structure characteristics and the impact of activities on the ecological environment in the mining area were analyzed. Based on the analysis results, an evaluation system for the degree of damage to the ecological environment by mining activities was constructed. According to the expert scoring method, a rating standard was developed to measure the degree of damage to the ecological environment. Depending on the degree of damage, appropriate recovery measures were formulated. The experimental results show that compared with the traditional restoration countermeasures, considering the destruction of the ecological environment during the mining process of comprehensive geological structures, the proposed restoration countermeasures have the advantages of low cost and high economic benefits.
Con el objetivo de destruir el entorno ecológico de la estructura geológica integral, las contramedidas de restauración tradicionales tienen el problema de un alto costo de los insumos y bajos beneficios económicos. Por esta razón, se propuso el proceso de destrucción del medio ambiente ecológico y las contramedidas de restauración de la estructura geológica integral. Se analizaron las características de la estructura geológica común y el impacto de las actividades sobre el medio ambiente ecológico en el área minera. Con base en los resultados del análisis, se construyó un sistema de evaluación del grado de daño al medio ambiente ecológico por las actividades mineras. De acuerdo con el método de calificación de expertos, se desarrolló un estándar de calificación para medir el grado de daño al medio ambiente. Dependiendo del grado de daño, se formularon las medidas de recuperación adecuadas. Los resultados experimentales muestran que en comparación con las contramedidas de restauración tradicionales, considerando la destrucción del ambiente ecológico durante el proceso de extracción de estructuras geológicas integrales, las contramedidas de restauración propuestas tienen las ventajas de bajo costo y altos beneficios económicos.
References
Asghari, M., Noaparast, M., Shafaie, S. Z., Ghassa, S., & Chehreh Chelgani, S. (2018). Recovery of coal particles from a tailing Dam for environmental protection and economical beneficiations. International Journal of Coal Science & Technology, 5(2), 253-263.
Buttler, C. J., & Wilson, M. A. (2018). Paleoecology of an Upper Ordovician submarine cave. dwelling bryozoan fauna and its exposed equivalents in northern Kentucky, USA. Journal of Paleontology, 92(4), 568-576.
Chen, W. J., Li, S. Y., Wang, J., Sun, K., & Si, Y. (2019). Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale, 11(34), 15783-15793.
Cheng, H. Y., & Liu, Y. N. (2020). An improved RSU-based authentication scheme for VANET. Journal of Internet Technology, 21(4).
Cui K., & Wang Y. X. (2019). Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China. Journal of Asian Earth Sciences, 176, 244-252.
Dochartaigh, B. É. Ó., Archer, N. A. L., Peskett, L., MacDonald, A. M., Black, A. R., Auton, C. A., Merritt, J. E., Gooddy, D. C., & Bonell, M. (2019). Geological structure as a control on floodplain groundwater dynamics. Hydrogeology Journal, 27(2), 703-716.
Gao, N. S., Cheng, B. Z., Hou, H., & Zhang, R. H. (2018). Mesophase pitch based carbon foams as sound absorbers. Materials Letters, 212, 243-246.
Gao, N. S., Guo, X. Y., Cheng, B. Z., Zhang, Y. N., Wei, Z. Y., & Hou, H. (2019). Elastic Wave Modulation in Hollow Metamaterial Beam With Acoustic Black Hole. IEEE Access, 7, 124141-124146.
Josephs, L. I., & Humphries, A. T. (2018). Identifying social factors that undermine support for nature-based coastal management. Journal of Environmental Management, 212, 32-38.
Jurczak, T., Wojtal-Frankiewicz, A., Kaczkowski, Z., Oleksinska, Z., Bednarek, A., & Zalewski, M. (2018). Restoration of a shady urban pond - The pros and cons. Journal of Environmental Management, 217, 919-918.
Robertson, L. W., Weber, R., Nakano, T., & Johansson, N. (2018). PCBs risk evaluation, environmental protection, and management: 50-year research and counting for elimination by 2028. Environmental Science and Pollution Research, 25(17), 16269-16276.
Rosińska, J., Romanowicz-Brzozowska, W., Kozak, A., & Goldyn, R. (2019). Zooplankton changes during bottom-up and top-down control due to sustainable restoration in a shallow urban lake. Environmental science and pollution research international, 26(19), 19575-19587.
Song, D. Q., Che, A. L., Zhu, R. J., & Ge, X. (2019). Natural Frequency Characteristics of Rock Masses Containing a Complex Geological Structure and Their Effects on the Dynamic Stability of Slopes. Rock Mechanics and Rock Engineering, 52(11), 4457-4473.
Staccione, A., Mysiak, J., Ostoich, M., & Marcomini, A. (2019). Financial liability for environmental damage: insurance market in Italy, focus on Veneto region experience. Environmental Science and Pollution Research International, 26 (25), 25749-25761.
Sur, K., & Chauhan, P. (2019). Dynamic trend of land degradation/restoration along Indira Gandhi Canal command area in Jaisalmer District, Rajasthan, India: a case study. Environmental Earth Sciences, 78(15), 1-11.
Webster, E., Gaudin, A. C. M., Pulleman., M., Siles, P., & Fonte, S. J. (2019). Improved Pastures Support Early Indicators of Soil Restoration in Low-input Agroecosystems of Nicaragua. Environmental Management, 64 (2), 201-212.
Wu, Y. X., Lyu, H. M., Shen, J. S., & Arulrajah, A. (2018). Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation. Environmental Earth Sciences, 77(10), 1-17.
Wu, Z., Liu, Y. N., & Jia, X. X. (2020). A novel hierarchical secret image sharing scheme with multi-group joint management. Mathematics, 8(3), 12.
Yaegashi, Y., Yoshioka, H., Unami, K., & Fujihara, M. (2018). A singular stochastic control model for sustainable population management of the fish-eating waterfowl Phalacrocorax Carbo. Journal of Environmental Management, 219, 18-27.
Yang, F., Yang, F., Wang, G. Y., Kong, T., Wang, H., & Zhang, C. S. (2020). Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture, 515, 9.
Yuan, J. Q., Chen, W. Z., Tan, X. J., Yang, D., & Wang, S. (2019). Countermeasures of water and mud inrush disaster in completely weathered granite tunnels: a case study. Environmental Earth Sciences, 78(18), 1-16.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Xiaolin Ren. (2023). Comprehensive evaluation model of rural financial ecological environment under the background of sustainable development. Sustainable Energy Technologies and Assessments, 60, p.102899. https://doi.org/10.1016/j.seta.2022.102899.
2. Yi Chen, Yajuan Li, Youping Shou, Boqun Liu, Huawei Li, Bin Liu, Siqi Chen, Shipei Dong. (2025). Exploring the Ecological Impacts and Implementation Strategies of Reclamation in Taiping Bay of Dalian Port as an Example. Journal of the Taiwan Institute of Chemical Engineers, 166, p.105023. https://doi.org/10.1016/j.jtice.2023.105023.
3. Chenlong Wang, Baolong Zhu, Fengying Ma, Jiahao Sun. (2024). Design of a PID Controller for Microbial Fuel Cells Using Improved Particle Swarm Optimization. Electronics, 13(17), p.3381. https://doi.org/10.3390/electronics13173381.
4. Xinxue Jin, Xinxin Jin, Nagamalai Vasimalai. (2022). Application of Big Data Technology in Environmental Pollution Control in Energy Ecological Economic Zone. International Transactions on Electrical Energy Systems, 2022, p.1. https://doi.org/10.1155/2022/1569905.
5. Chang You, Chunqian Jiang, En Liu. (2024). Exploring Farmers’ Perspectives on Ecosystem Degradation and Restoration in Southern Hilly Regions of China. Land, 13(10), p.1562. https://doi.org/10.3390/land13101562.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.