Published

2021-04-16

Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics

Método de análisis de los elementos finitos para estabilidad de taludes con base en estadísticas difusas

DOI:

https://doi.org/10.15446/esrj.v25n1.93320

Keywords:

Fuzzy statistics, Rock slope, Stability, Finite element analysis (en)
estadísticas difusas, pendiente de roca, análisis de elementos finitos (es)

Downloads

Authors

  • Zhongjie Wang Department of Architectural Engineering, Yantai Vocational College, Yantai, 264670, China
  • Min Lin Yantai Architectural Design and Research Co. Ltd, Yantai, 264000, China

In order to reduce the risk of slope stability evaluation due to the fuzziness of calculation parameters, a finite element analysis method of slope stability based on fuzzy statistics is proposed. Based on the principle of quasi-static method and with the help of the finite element software COMSOL multiphysics, this paper studies the stability of the gravel soil accumulation rock slope under the action of different seismic acceleration. By analyzing the displacement, plastic zone and safety factor of the rock soil slope, the stability of the rock soil slope is analyzed. The research results show that the fuzziness of mechanical parameters of rock and soil slope will lead to the fuzziness of position displacement and stress analysis results of rock and soil slope, and the analysis of rock and soil slope with the method of fuzzy finite element analysis can strengthen the comprehensive understanding of position displacement, stress and safety of rock and soil slope by engineers and technicians, and reduce the stability of rock and soil slope due to the fuzziness of calculation parameters to a certain extent Evaluate the risk qualitatively.

Con el fin de reducir el riesgo de evaluación en la estabilidad de taludes debido a la falta de claridad de los parámetros de cálculo, en este estudio se propone un método de análisis de elementos finitos con base en estadísticas difusas. Basado en el principio del método cuasi-estático y con la ayuda del software multifísico de elementos finitos COMSOL, este trabajo estudia la estabilidad del talud de roca con acumulación de grava en suelo bajo la acción de diferentes aceleraciones sísmicas. Al analizar el desplazamiento, la zona plástica y el factor de seguridad, se analiza la estabilidad del talud del suelo rocoso. Los resultados de la investigación muestran que la falta de claridad de los parámetros mecánicos de la pendiente de la roca y del suelo conducirá a la falta de claridad del desplazamiento de posición y los resultados del análisis de tensión de la pendiente de la roca y el suelo. El análisis de la pendiente de la roca y el suelo con el método de análisis difuso de elementos finitos puede fortalecer la comprensión integral del desplazamiento de posición, el estrés y la seguridad de la pendiente de la roca y el suelo por parte de ingenieros y técnicos, y reducir la estabilidad de la pendiente de la roca y el suelo debido a la falta de claridad de los parámetros de cálculo y, hasta cierto punto, evaluar el riesgo cualitativamente.

References

Bouida, N., Bouchikhi, A. S., Megueni, A., & Gouasmi, S. (2018). A finite element analysis for evaluation of j-integral in plates made of functionally graded materials with a semicircular notch. Journal of Failure Analysis and Prevention, 18, 1573–1586.

Canli, E., Loigge, B., & Glade T. (2018). Spatially distributed rainfall information and its potential for regional landslide early warning systems. Natural Hazards, 91(1), 103-127.

Cao, J., & Wen, F. H. (2019). The impact of the cross-shareholding network on extreme price movements: evidence from China. Journal of Risk, 22(2), 79–102.

Chen, C., Wang, W., & Lu, H. Y. (2019). Stability analysis of slope reinforced with composite anti-slide pile model. Rock and Soil Mechanics, 40(08), 3207-3217.

Chinkulkijniwat, A., Tirametatiparat, T., Supotayan, C., Yubonchit, S., Horpibulsuk, S., Salee, R., & Voottipruex, P. (2019). Stability characteristics of shallow landslide triggered by rainfall. Journal of Mountain Science, 16(9), 2171-2183.

Chiorescu, D., Chiorescu, E., Nagîţ, G., & Olaru, S. C. (2019). The study of the radius of connection of the die for deep drawing using analysis with finite element. Materials Science Forum, 957, 103-110.

Cifuentes, H., Montero-Chacón, F., Galán, J., Cabezas, J., & Martinez-De la Concha, A. (2019). A finite element-based methodology for the thermo-mechanical analysis of early age behavior in concrete structures. International Journal of Concrete Structures and Materials, 13(1), 41.

Feng, W. X., Ma, J. S., & He, J. (2019). Fitting method of pressure subsidence characteristics based on RBF surrogate model. Computer Simulation, 36(09), 5-9.

Kalateh, F. (2019). Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element method. Frontiers of Structural & Civil Engineering, 13(1), 15-37.

Karray, M., Hussein, M. N., Delisle, M. C., & Ledoux, C. (2018). Framework to assess the pseudo-static approach for the seismic stability of clayey slopes. Canadian Geotechnical Journal, 55(12), 1860-1876.

Kundu, J., Sarkar, K., Singh, P. K., & Singh, T. N. (2018). Deterministic and probabilistic stability analysis of soil slope – a case study. Journal of the Geological Society of India, 91(4), 418-424.

Kwan, J. S., Sze, E. H. Y., & Lam, C. (2019). Finite element analysis for rockfall and debris flow mitigation works. Canadian Geotechnical Journal, 56(9), 1225-1250.

Naderi-Boldaji, M., Hajian, A., Ghanbarian, D., & Bahrami, M. (2018). Finite element simulation of plate sinkage, confined and semi-confined compression tests: A comparison of the response to yield stress. Soil and Tillage Research, 179(1), 63-70.

Norouzi, E., Moslemzadeh, H., & Mohammadi, S. (2019). Maximum entropy based finite element analysis of porous media. Frontiers of Structural and Civil Engineering, 13(2), 364-379.

Provost, F., Malet, J. P., Gance, J., Helmstetter, A., & Doubre, C. (2018). Automatic approach for increasing the location accuracy of slow-moving landslide endogenous seismicity: the APOLoc method. Geophysical Journal International, 215(2), 1455-1473.

Sajjad, M., Joy, J. A., & Jung, D. W. (2018). Finite element analysis of incremental sheet forming for metal sheet. Key Engineering Materials, 783, 148-153.

Saneie, H., Alipour-Sarabi, R., Nasiri-Gheidari, Z., & Tootoonchian, F. (2018). Challenges of finite element analysis of re-solvers. IEEE Transactions on Energy Conversion, 34(2), 973 - 983.

Talesnick, M. (2013). Measuring soil pressure within a soil mass. Canadian Geotechnical Journal, 50(7), 716-722.

Tamate, S., & Hori, T. (2018). Monitoring shear strain in shallow subsurface using mini pipe strain meter for detecting potential threat of slope failure. Geotechnical Testing Journal, 41(2), 413-424.

Xiao, S., Guo, W. D., & Zeng, J. (2018). Factor of safety of slope stability from deformation energy. Canadian Geotechnical Journal, 55(2), 296-302.

How to Cite

APA

Wang, Z. . and Lin, M. (2021). Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics. Earth Sciences Research Journal, 25(1), 123–130. https://doi.org/10.15446/esrj.v25n1.93320

ACM

[1]
Wang, Z. and Lin, M. 2021. Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics. Earth Sciences Research Journal. 25, 1 (Apr. 2021), 123–130. DOI:https://doi.org/10.15446/esrj.v25n1.93320.

ACS

(1)
Wang, Z. .; Lin, M. Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics. Earth sci. res. j. 2021, 25, 123-130.

ABNT

WANG, Z. .; LIN, M. Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics. Earth Sciences Research Journal, [S. l.], v. 25, n. 1, p. 123–130, 2021. DOI: 10.15446/esrj.v25n1.93320. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/93320. Acesso em: 10 mar. 2025.

Chicago

Wang, Zhongjie, and Min Lin. 2021. “Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics”. Earth Sciences Research Journal 25 (1):123-30. https://doi.org/10.15446/esrj.v25n1.93320.

Harvard

Wang, Z. . and Lin, M. (2021) “Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics”, Earth Sciences Research Journal, 25(1), pp. 123–130. doi: 10.15446/esrj.v25n1.93320.

IEEE

[1]
Z. . Wang and M. Lin, “Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics”, Earth sci. res. j., vol. 25, no. 1, pp. 123–130, Apr. 2021.

MLA

Wang, Z. ., and M. Lin. “Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics”. Earth Sciences Research Journal, vol. 25, no. 1, Apr. 2021, pp. 123-30, doi:10.15446/esrj.v25n1.93320.

Turabian

Wang, Zhongjie, and Min Lin. “Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics”. Earth Sciences Research Journal 25, no. 1 (April 16, 2021): 123–130. Accessed March 10, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/93320.

Vancouver

1.
Wang Z, Lin M. Finite Element Analysis Method of Slope Stability based on Fuzzy Statistics. Earth sci. res. j. [Internet]. 2021 Apr. 16 [cited 2025 Mar. 10];25(1):123-30. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/93320

Download Citation

CrossRef Cited-by

CrossRef citations7

1. Vaishnavi Bansal, Raju Sarkar. (2024). Prophetical Modeling Using Limit Equilibrium Method and Novel Machine Learning Ensemble for Slope Stability Gauging in Kalimpong. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(1), p.411. https://doi.org/10.1007/s40996-023-01156-0.

2. Ahmed Hemed, Latifa Ouadif, Khadija Baba. (2023). Advances in Research in Geosciences, Geotechnical Engineering, and Environmental Science. Springer Proceedings in Earth and Environmental Sciences. , p.274. https://doi.org/10.1007/978-3-031-49345-4_27.

3. Guangjin Wang, Bing Zhao, Bisheng Wu, Chao Zhang, Wenlian Liu. (2023). Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases. International Journal of Mining Science and Technology, 33(1), p.47. https://doi.org/10.1016/j.ijmst.2022.07.002.

4. A. Haamidh, E. Balasubramanian, S. Revathi, R. Suganya. (2023). Landslide prediction and early warning system (LPEWS) in the regions of coonoor. PROCEEDINGS OF THE 4TH INTERNATIONAL COMPUTER SCIENCES AND INFORMATICS CONFERENCE (ICSIC 2022). PROCEEDINGS OF THE 4TH INTERNATIONAL COMPUTER SCIENCES AND INFORMATICS CONFERENCE (ICSIC 2022). 2979, p.020013. https://doi.org/10.1063/5.0170125.

5. Yafeng Yang, Lihong Li, Hongrui Wang. (2024). On the Approaches to Enhance the Sustainability of Basic College Mathematics Course Teaching via Innovative Ability Training: A Fuzzy Set Perspective. Sustainability, 16(23), p.10161. https://doi.org/10.3390/su162310161.

6. Jin Xu, Yansen Wang, Changchun Li. (2022). Stability analysis of rock slope and calculation of rock lateral pressure in foundation pit with structural plane and cave development. Scientific Reports, 12(1) https://doi.org/10.1038/s41598-022-12765-6.

7. Renjie Wu, Zheng Li, Wengang Zhang, Tao Hu, Shilong Xiao, Yangjun Xiao, Sheng Zhang, Dengsui Zhang, Chengwu Ming. (2023). Stability analysis of rock slope under Sujiaba overpass in Chongqing City based on kinematic and numeric methods. Frontiers in Earth Science, 11 https://doi.org/10.3389/feart.2023.1181949.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 7
  • Usage
  • SciELO - Full Text Views: 44
  • SciELO - Abstract Views: 42
  • Captures
  • Mendeley - Readers: 25
  • Mendeley - Readers: 4
  • Mendeley - Readers: 1

Article abstract page views

627

Downloads