Published

2021-04-16

Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression

Características fractales de la heterogeneidad geomorfológica en las aguas de las islas Xisha bajo regresión lineal múltiple

DOI:

https://doi.org/10.15446/esrj.v25n1.94076

Keywords:

Multiple linear regression, the Xisha Islands, water area, landforms, heterogeneity, fractal characteristics (en)
Regresión lineal múltiple, Las islas Xisha, Área de agua, Accidentes geográficos, Heterogeneidad, Características fractales (es)

Downloads

Authors

  • Xuli Wang Department of Management Engineering, Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010070, China

Based on the obvious anisotropy of Xisha Islands waters topography, the uneven fractal characteristics of Xisha Islands waters topography are studied by using multivariate linear expression. Using multiple linear regression analysis method to extract the projection of heterogeneous characteristic factors, the geometric heterogeneous characteristics of Xisha Islands waters are obtained. The fractal feature of landform is studied based on projection coverage method, and the non-isotropic body irregularity in Xisha Islands waters is measured. Experimental results show that this method can effectively analyze the non-uniform fractal characteristics of the Xisha Islands waters. The fractal dimension of different types of landforms in Xisha Islands in the corresponding region is high mountain area > medium and low mountain area > basin area, which reflects the difference of surface roughness or complexity of different types of landforms. The calculated fractal dimension is helpful to reveal the heterogeneity of general geomorphological features in different development stages.

Con base en la anisotropía obvia de la topografía de las aguas de las islas Xisha, se estudian las características fractales desiguales de la topografía de las aguas de las islas Xisha mediante el uso de una expresión lineal multivariante. Utilizando el método de análisis de regresión lineal múltiple para extraer la proyección de factores característicos heterogéneos, se obtienen las características geométricas heterogéneas de las aguas de las Islas Xisha. La característica fractal de la forma del terreno se estudia con base en el método de cobertura de proyección y se mide la irregularidad del cuerpo no isotrópico en las aguas de las islas Xisha. Los resultados experimentales muestran que este método puede analizar eficazmente las características fractales no uniformes de las aguas de las islas Xisha. La dimensión fractal de diferentes tipos de accidentes geográficos en las islas Xisha en la región correspondiente es: zona de alta montaña > zona de media y baja montaña > zona de la cuenca, que refleja la diferencia de rugosidad o complejidad de la superficie de diferentes tipos de accidentes geográficos. La dimensión fractal calculada es útil para revelar la heterogeneidad de las características geomorfológicas generales en diferentes etapas de desarrollo.

References

Abuzied, S. M., & Alrefaee, H. A. (2017). Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-QaÀ plain area, Egypt. Hydrogeology Journal, 25(7), 1-22.

Aranguren-Riano, N. J., Guisande, C., Shurin, J. B., Jones, N. T., Barreiro, A., & Duque, S. R. (2018). Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography. Taxonomy and Productivity. Oecologia, 187(46), 1-12.

Bagley, R. K., Sousa, V. C., Niemiller, M. L., & Linnen, C. R. (2017). History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (Neodiprion lecontei). Molecular Ecology, 26(4), 1022-1044.

Cai, A. H., He, J. W., & Wang, P. (2016). Experiment and error analysis of path planning for Sonobuoy array deployment. Journal of China Academy of Electronics and Information Technology, 11(1), 21-24.

Chen, B. Y., Yuan, H., Li, Q., Shaw, S. L., Lam, W. H. K., & Chen, X. (2016). Spatiotemporal data model for network time geographic analysis in the era of big data. International Journal of Geographical Information Science, 30(6), 1041-1071.

Gao, J. S., You, X. M., & Zheng, J. (2016). Estimation of SOC by ANN and Ah method. Chinese Journal of Power Sources, 40(9), 1842-1844.

Gao, S., Janowicz, K., Montello, D. R., & Hu, Y. (2017). A data-synthesis-driven method for detecting and extracting vague cognitive regions. International Journal of Geographical Information Science, 31(6), 1-27.

Ginde, G., Saha, S., Mathur, A., Venkatagiri, S., Vadakkepat, S., Narasimhamurthy, A., & Daya Sagar, B. S. (2016). ScientoBASE: A framework and model for computing scholastic indicators of non-local influence of journals via native data acquisition algorithms. Scientometrics, 108(3), 1-51.

Gu, C. Y., Zhao, P., Wang, L., & Guo, H. (2018). Technical application of petroleum logging instruments in marine logging. Polish Maritime Research, 25(3), 22-28.

Hu, Y., Xu, M., & Li, Y. (2018). Simulation model and state analysis of ship transmission line. Polish Maritime Research, 25(3), 36-42.

Iacobucci, D., Schneider, M. J., Popovich, D., & Bakamitsos, G. A. (2016). Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux. Behavior Research Methods, 49(1), 1-2.

Juban, R., Ohlsson, H., Maasoumy, M., Poirier, L., & Kolter, Z. (2016). A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014. International Journal of Forecasting, 32(3), 1094-1102.

Kong, D. S., Deng, M. X., Liu, Y., & Tan, X. (2018). Study of the force and deformation characteristics of subsea mudmat-pile hybrid foundations. Polish Maritime Research, 25(3), 43-53.

Li, Y. T., Yang, X. L., & Li, S. B. (2017). Analysis of disaster impact factors based on spatial autocorrelation. Automation & Instrumentation, 3, 4-6.

Liang, Y. M., & Pei, X. H. (2016). Artificial fish-swarm algorithm optimized by particle swarm algorithm. Computer Simulation, 33(6), 213-217.

Liu, B., & Jiang, X. (2020). Consolidation and Deformation Characteristics of Soft Rock Foundation in a Hydrological Wetland Environment. Earth Sciences Research Journal, 24, 183-190.

Luo, C. H. (2016). Active contour model based on gradient vector flow. Journal of Jilin University (Science Edition), 05, 1103-1108.

Lyu, N., Zhao, J., & Lyu, M. (2018). Exploration of land development intensity index of port container logistics park based on quantitative algorithm and pent analysis method. Polish Maritime Research, 25(3), 61-67.

Oto-Peralias, D. (2018). What do street names tell us? The 'city-text' as socio-cultural data. Journal of Economic Geography, 18(1), 187-211.

Ozguc, O. (2018). Estimation of buckling response of the deck panel in axial compression. Polish Maritime Research, 25(4), 98-105.

Padisak, J., Vasas, G., & Borics, G. (2016). Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia, 764(1), 3-27.

Riordan, E. C., Gugger, P. F., Ortego, J., Smith, C., Gaddis, K., Thompson, P., & Sork, C. L. (2016). Association of genetic and phenotypic variability with geography and climate in three southern California oaks. American Journal of Botany, 103(1), 73-85.

Schuur, J. D., Baker, O., Freshman, J., Wilson, M., & Cutler, D. M. (2016). Where do freestanding emergency departments choose to locate? A national inventory and geographic analysis in three states. Annals of Emergency Medicine, 69(4), 383-392.

Skorek, G. (2018). Study of losses and energy efficiency of hydrostatic drives with hydraulic cylinder. Polish Maritime Research, 25(4), 114-128.

Wilson, C. A., Matthews, K., Pulsipher, A., & Wang, W. H. (2016). Using geographic information systems to determine site suitability for a low-level radioactive waste storage facility. Health Physics, 110(2 Suppl 1), S17-S25.

Wu, D. (2018). Impact of green total factor productivity in marine economy based on entropy method. Polish Maritime Research, 25(3), 141-146.

Yuan, H., Ding, X. P., Wang, B. R., Mou, W., & Yang, C. (2016). Research on effect on DC-DC converter caused by parasitic resistance. Journal of Power Supply, 14(1), 86-94.

Zhang, Q. (2020). Study on Optimization Method of Spatial Structure Characteristics of Peak Forest Landform in Wulingyuan Scenic Area. Earth Sciences Research Journal, 24, 35-44.

Zhuo, W. (2016). A large-area image sensing and detection system based on embedded thin-film classifiers. IEEE Journal of Solid-State Circuits, 51(1), 281-290.

How to Cite

APA

Wang, X. (2021). Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression. Earth Sciences Research Journal, 25(1), 41–48. https://doi.org/10.15446/esrj.v25n1.94076

ACM

[1]
Wang, X. 2021. Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression. Earth Sciences Research Journal. 25, 1 (Apr. 2021), 41–48. DOI:https://doi.org/10.15446/esrj.v25n1.94076.

ACS

(1)
Wang, X. Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression. Earth sci. res. j. 2021, 25, 41-48.

ABNT

WANG, X. Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression. Earth Sciences Research Journal, [S. l.], v. 25, n. 1, p. 41–48, 2021. DOI: 10.15446/esrj.v25n1.94076. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/94076. Acesso em: 10 mar. 2025.

Chicago

Wang, Xuli. 2021. “Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression”. Earth Sciences Research Journal 25 (1):41-48. https://doi.org/10.15446/esrj.v25n1.94076.

Harvard

Wang, X. (2021) “Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression”, Earth Sciences Research Journal, 25(1), pp. 41–48. doi: 10.15446/esrj.v25n1.94076.

IEEE

[1]
X. Wang, “Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression”, Earth sci. res. j., vol. 25, no. 1, pp. 41–48, Apr. 2021.

MLA

Wang, X. “Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression”. Earth Sciences Research Journal, vol. 25, no. 1, Apr. 2021, pp. 41-48, doi:10.15446/esrj.v25n1.94076.

Turabian

Wang, Xuli. “Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression”. Earth Sciences Research Journal 25, no. 1 (April 16, 2021): 41–48. Accessed March 10, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/94076.

Vancouver

1.
Wang X. Fractal characteristics of geomorphological heterogeneity in Xisha Islands waters under Multiple Linear Regression. Earth sci. res. j. [Internet]. 2021 Apr. 16 [cited 2025 Mar. 10];25(1):41-8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/94076

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Usage
  • SciELO - Full Text Views: 23
  • SciELO - Abstract Views: 2
  • Captures
  • Mendeley - Readers: 1

Article abstract page views

264

Downloads