Published
Application of UAV-Low Altitude Remote Sensing System in Sea Area Supervision
Aplicación del sistema de teledetección con aeronaves no tripuladas de baja altitud en la supervisión de zonas marítimas
DOI:
https://doi.org/10.15446/esrj.v25n1.94162Keywords:
UAV, remote sensing, sea area supervision, aerial photography, image processing (en)Aeronaves No Tripuladas, Sensores remotos, Supervisión de la zona marítima, Fotografía aérea, Procesamiento de imágenes (es)
Downloads
The sea area supervision is the premise and guarantee of safeguarding national security, protecting national sovereignty, and realizing the development of marine resources, and its importance is self-evident. To carry out the national sea area work more efficiently, this study designed low altitude-Unmanned Aerial Vehicles (UAV) remote sensing system applied to the sea area supervision and analyzed the remote sensing photography technology and remote sensing image processing technology. Experiments verified the effectiveness of the system. The research results show that the UAV-based low altitude remote sensing system can extract high-precision sea area information through aerial images’ interpretation. It is hoped that this study can provide some reference for improving the efficiency of current sea area supervision.
La supervisión del área marítima es la premisa y garantía de salvaguardar la seguridad nacional, proteger la soberanía nacional y desarrollar los recursos marinos. Su importancia es evidente. Para llevar a cabo el trabajo de manera más eficiente, este estudio diseñó un sistema de teledetección de baja altitud con Aeronaves No Tripuladas (UAV) aplicado a la supervisión del área marítima y analizó la tecnología de fotografía de teledetección y la tecnología de procesamiento de imágenes de teledetección. La eficacia del sistema se verificó mediante experimentos. Los resultados de la investigación muestran que el sistema de teledetección de baja altitud basado en vehículos aéreos no tripulados puede extraer información del área marina de alta precisión a través de la interpretación de imágenes aéreas. Se espera que este estudio pueda proporcionar alguna referencia para mejorar la eficiencia de la supervisión actual del área marítima.
References
Abboud, I. A., & Nofal, R. A. E. (2020). Using Remote Sensing Techniques to Interpret Geomorphological Features Along the East Coast of the Red Sea, at Yanbu, Saudi Arabia. Arabian Journal of Geosciences, 13(14).
Alfy, M. E. (2016). Assessing the impact of arid area urbanization on flash floods using GIS, remote sensing, and HEC-HMS rainfall–runoff modeling. Hydrology Research, 47(6), 1142-1160.
Amin, M., Khan, M. R., Baig, M. H. A., Baig, I. A., Imran, M., & Hanif, M. (2020). Calculation and Validation of Actual Evapotranspiration from Satellite Derived Indices with Observed Data in Delineated Agro-Climatic Zones of Punjab Using Remote Sensing and GIS Techniques. Applied Ecology and Environmental Research, 18, 4637-4650.
Bi, T. (2020). Optimal Allocation Algorithm of Geological and Ecological High-Resolution Remote Sensing Monitoring Sampling Points. Earth Sciences Research Journal, 24, 105-110.
Cao, G., Zhou, L., & Li, Y. (2016) A new change-detection method in high-resolution remote sensing images based on a conditional random field model. International Journal of Remote Sensing, 37(5-6), 1173-1189.
Cummer, S. A., & Inan, U. S. (2016). Ionospheric E region remote sensing with ELF radio atmospherics. Radio Science, 33(6), 1781-1792.
Gorji, T., Sertel, E., & Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 74, 384-391.
Hoque, A. A., Phinn, S., Roelfsema, C., & Childs, I. (2017). Tropical cyclone disaster management using remote sensing and spatial analysis: A review. International Journal of Disaster Risk Reduction, 22, 345-354.
Lamchin, M., Lee, J. Y., Lee, W. K., Lee, E. J., Kim, M., Lim, C. H., Choi, H. A., & Kim, S. R. (2016). Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Advances in Space Research, 57(1), 64-77.
Liu, H., & Zhou, Q. (2017). Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison. Heilongjiang Medicine Journal, 25(5), 1037-1050.
Nieuwhof, S., Herman, P. M. J., Dankers, N., Troost, K., & Van der Wal, D. (2015). Remote Sensing of Epibenthic Shellfish Using Synthetic Aperture Radar Satellite Imagery. Remote Sensing, 7(4), 3710-3734.
Ren, J., Yang, W., Yang, X., Deng, X., Zhao, H., Wang, F., & Wang, L. (2019). Optimization of Fusion Method for GF-2 Satellite Remote Sensing Images Based on the Classification Effect. Earth Sciences Research Journal, 23, 163-169.
Weixing, W., Ting, C., Sheng, L., & Enmei, T. (2015). Remote Sensing Image Automatic Registration on Multi-scale Harris-Laplacian. Journal of the Indian Society of Remote Sensing, 43(3), 501-511.
Xu, A. (2020). Remote Monitoring System of Geological Exploration in Lava Area Based on GPS. Earth Sciences Research Journal, 24, 207-214.
Zhang, S., Li, F., Li, T., Yang, J., Bu, K., Chang, L., Wang, W., & Yan, Y. (2015). Remote sensing monitoring of gullies on a regional scale: A case study of Kebai region in Heilongjiang Province, China. Chinese Geographical Science, 25(005), 602-611.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Jiaqi Wei, Donghua Zhao, Chenguang Wang, Jun Tang, Chong Shen, Jun Liu, Wenzhao Wang. (2023). Advances in Guidance, Navigation and Control. Lecture Notes in Electrical Engineering. 845, p.1591. https://doi.org/10.1007/978-981-19-6613-2_156.
2. Baogang Zhang, Ming Liu, Ruicong Li, Jie Liu, Lie Feng, Han Zhang, Weili Jiao, Liang Lang. (2024). Evaluation of Urban Microscopic Nighttime Light Environment Based on the Coupling Observation of Remote Sensing and UAV Observation. Remote Sensing, 16(17), p.3288. https://doi.org/10.3390/rs16173288.
3. Minghui Xu, Zhanchuan Chen. (2024). Identification of traditional settlement landscape areas in Hainan based on unmanned aerial remote sensing imagery. Applied Mathematics and Nonlinear Sciences, 9(1) https://doi.org/10.2478/amns-2024-1745.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.