Published

2022-09-08

Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey

Monitoreo de la sequía a través del algoritmo MOWCATL de minería de datos para la cuenca de Aras, Turquía

DOI:

https://doi.org/10.15446/esrj.v26n2.94786

Keywords:

data mining, drought index, drought, oceanic index (en)
mineria de datos; índice de sequía; sequía; índice oceánico (es)

Downloads

Authors

  • Emre Topçu Kafkas University

Drought is a natural phenomenon that occurs frequently and has some adverse effects on the ecosystem and humanity. Determination of drought beforehand is vital for optimal management of water resources. Many different methods have been developed to detect drought. Sequential association analysis is used for the data series analysis containing time information and is one of the methods used to determine the drought. A correlation can be established between the values taken by the data at different times when determining association rules with this method. The primary purpose of this study is to determine the sequential association patterns between precipitation and climate oscillation index for Aras Basin. The Aras basin is a region where irrigation and animal husbandry are common. Today, many dams and hydroelectric power plants, together with the increasing population, meet the water and energy needs. A possible drought event in this region will adversely affect the living things in the basin. Therefore, the study focused on this basin. Finding sequential associations between precipitation and climate oscillation index can determine the temporal correlations between these parameters and specifically detect drought. The MOWCATL (Minimal Occurrences with Constraints and Time Lags) algorithm was used to detect sequential associations, and the J-measure was used to evaluate the patterns in the study. Sequential association patterns were determined by applying this method to the precipitation data obtained from 6 meteorology stations in the Aras basin. AO (Arctic Oscillation) Index, MEI (Multivariate ENSO) Index, NAO (North Atlantic Oscillation) Index, Oceanic Niño Index (ONI), PDO (Pacific Decadal Oscillation) Index, PNA (Pacific/North American), and SOI (Southern Oscillation Index), followed by the 1, 3, 6 and 12-month Agricultural Standardized Precipitation Index (a-SPI) were used in sequential association. The study results revealed that the antecedent parameters were ineffective in detecting arid conditions in Ardahan and Doğubeyazıt stations, and they were influential on drought conditions, especially in a-SPI-3 and a-SPI-12 month periods at other stations. Although the altitude and geographical features are different, similar climatic patterns have been detected in some stations. As a result, it has been determined that climatic oscillations generally bring about typical situations in terms of drought for the Aras Basin.

La sequía es un fenómeno natural que ocurre muy frecuentemente y que tiene efectos negativos en los ecosistemas y en la humanidad. La definición de la sequía, de antemano, es especialmente necesarua para la administración óptima de los recursos de agua. Muchos métodos se han desarrollado para detectar la sequía. Uno de estos métodos es el análisis de asociación secuencial que se usa para el análisis de series de datos con información de tiempo. Se puede establecer una correlación entre los valores tomados en diferentes períodos cuando se determinan las reglas asociativas con este método. El propósito principal de este estudio es determinar los patrones de asociación secuencial entre precipitación y el índice de oscilación climática para la cuenca de Aras, en Turquía. Esta cuenca es una región donde la irrigación y la agricultura son comunes. Al día de hoy, muchas presas e hidroeléctricas, junto con el incremento de la población, demandan estos recursos hidrológicos. Un evento de sequía en la región afectaría a estos seres que dependen de la cuenca. Por esta razón, el estudio se enfoca en la cuenca de Aras. Encontrar las asociaciones secuenciales entre precipitación y el índice de oscilación climática puede determinar las correlaciones temporales entre estos parámetros y, específicamente, detectar la sequía. En este trabajo se usó el algoritmo MOWCATL (ocurrencias mínimas con restricciones y retrasos, literal del inglés Minimal Occurrences with Constraints and Time Lags) para detectar las asociaciones secuenciales y la medición J se usó para evaluar estos patrones. Los patrones de asociación secuencial se determinaron al aplicar este método a la información de precipitación obtenida de seis estaciones meteorológicas en la cuenca de Basin. Los índices de Oscilación Ártica, ENSO Multivariado, Oscilación del Atlántico Norte, Oceánico del Niño, Oscilación Decadal del Pacífico, Pacífico/Norte América, y de Oscilación del Sur, seguidos por el Índice de Precipitación Agrícola Estandarizado (a-SPI) en los meses 1, 3, 6 y 12 se utlizaron en la asociación secuencial. Los resultados del estudio revelan que estos parámetros no son efectivos para detectar las condiciones áridas en las estaciones de Ardahan y Doğubeyazıt pero si son efectivos en las condiciones de sequía, especialmente en los períodos a-SPI-3 y a-SPI-12 en otras estaciones. A pesar de que las condiciones de altitud y geográficas son diferetes, patrones climáticos se han detectado en algunas estaciones. Como resultado se determinó que las oscilaciones climáticas generalemente provocan situaciones normales de sequía en la cuenca de Aras. 

References

Bayardo, R. J. Agrawal R. (1999). Mining the most interesting rules. Proc. Fifth ACM Int. Conf. on Knowledge Discovery and Data Mining, San Diego, CA, Association for Computing Machinery, 145–154. DOI: https://doi.org/10.1145/312129.312219

Bos, M. G., Kselik, R. A., Allen, R. G. and Molden D. (2008). Water requirements for irrigation and the environment. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-8948-0. DOI: https://doi.org/10.1007/978-1-4020-8948-0

Das, G., Lin, K. I. and Mannila, H. (1998). Rule discovery from time series, in Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, pp. 16– 22.

Ebrahimpour, M., Rahimi, J., Nikkhah, A. and Bazrafshan, J. (2015). Monitoring agricultural drought using the standardized effective precipitation index. J Irrig Drain Eng 141(1):04014044. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000771

Edwards, D. C. and McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report Number 97-2, Colorado State University, Fort Collins, CO.

Esmail, H. A., Hassan, K., Sahar, N. and Ahmad, G. (2020). Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques. Journal of Arid Land, https://doi.org/10.1007/s40333-020-0096-4. DOI: https://doi.org/10.1007/s40333-020-0096-4

Feddes, R. A, Kabat. P., Van, B. P., Bronswijk, J. J. B. and Halbertsma, J. (1988). Modelling soil water dynamics in the unsaturated zone—state of the art. J Hydrol 100(1):69–111. DOI: https://doi.org/10.1016/0022-1694(88)90182-5

Francis, R. C. and Hare, S. R. (1994). Decadal-scale regime shifts in the large marine ecosystems of the Northeast Pacific: a case for historical science, Fish. Oceanogr. 3, 279–291. DOI: https://doi.org/10.1111/j.1365-2419.1994.tb00105.x

Gao, L., Zhang, Y. (2016). Spatio-temporal variation of hydrological drought under climate change during the period 1960–2013 in the Hexi Corridor, China. Journal of Arid Land, 8(2): 157–171. doi:10.1007/s40333-015-0022-3. DOI: https://doi.org/10.1007/s40333-015-0022-3

Groth, R. (1998). Data Mining: A Hands-On Approach for Business Professionals, Prentice Hall, New Jersey, 264 pp.

Harms, S. K., Deogun, J. and Tadesse, T. (2002). Discovering sequential rules with constraints and time lags in multiple sequences, in Proc. 2002 Int. Symposium on Methodologies for Intelligent Systems, edited by M. S. Hacid et al., pp. 432–441, ISMIS, Lyon, France. DOI: https://doi.org/10.1007/3-540-48050-1_47

Hilderman, R. J. and Hamilton, H. J. (1999). Knowledge discovery and interestingness measures: A survey. Tech. Rep. CS-99-04, Department of Computer Science, University of Regina, 28 pp.

Hurrell, J. W. (1995). Decadal trends. in the North Atlantic Oscillation: regional temperatures and precipitation, Science 269, 676–679. DOI: https://doi.org/10.1126/science.269.5224.676

McKee, T. B., Doesken, N. J. and Kleist, J. (1993). The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, California, 17-22 January, American Meteorological Society, Dallas, Texas, 15-20 January, Anaheim, CA. American Meteorological Society, Boston, MA, 179-184

McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J. R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P., Picaut, J., Reynolds, R. W., Smith, N. and Takeuchi, K. (1998). The tropical ocean-global atmosphere observing system: A decade of progress, J. Geophys. Res. 103(C7), 14,169–14,240. DOI: https://doi.org/10.1029/97JC02906

Mehdi, G. R., Seyyed, J. S. and Arash, M. (2020). Precipitation forecasting by large-scale climate indexs and machine learning techniques. Journal of Arid Land, 12(5): 854–864. DOI: https://doi.org/10.1007/s40333-020-0097-3

Overland, J. E., Niebauer, H. J., Adams, J. M., Bond, N. A. and McNutt, S. L. (2002). Causes of variability in the Aleutian low: A project for the Arctic Research Initiative.

Padmanabhan, B. and Tuzhilin, A. (1999). Unexpectedness as a measure of interestingness in knowledge discovery. Decis. Support Syst., 27, 303–318. DOI: https://doi.org/10.1016/S0167-9236(99)00053-6

Patwardhan, A. S., Nieber, J. L. and Johns, E. L. (1990) Effective Rainfall Estimation Methods. J Irrig Drain Eng 116(2):182–193. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1990)116:2(182)

Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., Ruedy, R. (1990). Potential evapotranspiration and the likelihood of future drought. J. Geophys. Res., 95, 9983–10 004. DOI: https://doi.org/10.1029/JD095iD07p09983

Silberschatz, A. and Tuzhilin, A. (1995). On subjective measures of interestingness in knowledge discovery. Proc. First Int. Conf. on Knowledge Discovery and Data Mining, Montreal, Canada, Association for Computing Machinery, 275–281.

Smyth, P. and Goodman, R. M. (1992). An information theoretic approach to rule induction from databases, IEEE Transactions on Knowledge and Data Engineering 4(4): 301–316. DOI: https://doi.org/10.1109/69.149926

Tadesse, T. (2002) Identifying drought and its associations with climatic and oceanic parameters using data mining techniques. Ph.D. dissertation, University of Nebraska, Lincoln.

Tadesse, T., Wilhite, D., Harms, S., Hayes, M. and Goddard, S. (2004). "Drought Monitoring Using Data Mining Techniques: A Case Study for Nebraska, USA", Natural Hazards, vol. 33, 2004, s. 137-159. DOI: https://doi.org/10.1023/B:NHAZ.0000035020.76733.0b

Tadesse, T., Wilhite, D. A., Hayes, M. J. and Goddard, S. (2005). Discovering Associations between Climatic and Oceanic Parameters to Monitor Drought in Nebraska Using Data-Mining Techniques" (2005). Drought Mitigation Center Faculty Publications. 40. DOI: https://doi.org/10.1175/JCLI3346.1

Tigkas, D., Vangelis, H. and Tsakiris, G. (2019). Drought characterisation based on an agriculture-oriented standardized precipitation index. Theoretical and Applied Climatology 135:1435–1447. DOI: https://doi.org/10.1007/s00704-018-2451-3

Trenberth, K. E. and Hoar, T. J. (1996). The 1990–1995 El Niño-Southern oscillation event longest on record, G 23, 57–60. DOI: https://doi.org/10.1029/95GL03602

Two Crows Corporation. (1999). Introduction to Data Mining and Knowledge Discovery, 3rd edn.,Two Crows Corporation, Postmac, MD.

Wang, Y., Kong, Y., Chen, H. and Ding, Y. (2020). Spatial-temporal characteristics of drought detected from meteorological data with high resolution in Shaanxi Province, China. Journal of Arid Land, 12(4): 561–579. DOI: https://doi.org/10.1007/s40333-020-0066-x

Wolter, K. and Timlin, M. S. (1993). Monitoring ENSO in COADS with a seasonally adjusted principal component index, in Proceedings Seventh Annual Climate Diagnostic Workshop, Norman, Oklahoma, March 1993, pp. 52–57.

Wu, Y.,, Batur, B., Zhang, J. and Hamid RASULOV. (2015). Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index. Journal of Arid Land, 7(4): 527–543. Yang, M., Yu. Y., Zhang, H., Wang, Q., Gan. M. and Yu Ruide. (2020). Tree ring based drought variability in Northwest Tajikistan since 1895 AD. Journal of Arid Land, 12(3): 413–422. DOI: https://doi.org/10.1007/s40333-015-0125-x

Yurekli, K., Sattari, T. M., Anlı, S. A. and Hınıs A M. (2012). Seasonal and annual regional drought prediction by using data-mining approach Atmósfera 25(1), 85-105.

How to Cite

APA

Topçu, E. (2022). Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey . Earth Sciences Research Journal, 26(2), 183–196. https://doi.org/10.15446/esrj.v26n2.94786

ACM

[1]
Topçu, E. 2022. Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey . Earth Sciences Research Journal. 26, 2 (Sep. 2022), 183–196. DOI:https://doi.org/10.15446/esrj.v26n2.94786.

ACS

(1)
Topçu, E. Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey . Earth sci. res. j. 2022, 26, 183-196.

ABNT

TOPÇU, E. Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey . Earth Sciences Research Journal, [S. l.], v. 26, n. 2, p. 183–196, 2022. DOI: 10.15446/esrj.v26n2.94786. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/94786. Acesso em: 16 aug. 2024.

Chicago

Topçu, Emre. 2022. “Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey ”. Earth Sciences Research Journal 26 (2):183-96. https://doi.org/10.15446/esrj.v26n2.94786.

Harvard

Topçu, E. (2022) “Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey ”, Earth Sciences Research Journal, 26(2), pp. 183–196. doi: 10.15446/esrj.v26n2.94786.

IEEE

[1]
E. Topçu, “Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey ”, Earth sci. res. j., vol. 26, no. 2, pp. 183–196, Sep. 2022.

MLA

Topçu, E. “Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey ”. Earth Sciences Research Journal, vol. 26, no. 2, Sept. 2022, pp. 183-96, doi:10.15446/esrj.v26n2.94786.

Turabian

Topçu, Emre. “Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey ”. Earth Sciences Research Journal 26, no. 2 (September 8, 2022): 183–196. Accessed August 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/94786.

Vancouver

1.
Topçu E. Drought Monitoring Using MOWCATL Data Mining Algorithm in Aras Basin, Turkey . Earth sci. res. j. [Internet]. 2022 Sep. 8 [cited 2024 Aug. 16];26(2):183-96. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/94786

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Milad Sabamehr, Cansu Çiğdem Ekin. (2023). AI-Driven Drought Management System: A Turkish Case Study. 2023 4th International Informatics and Software Engineering Conference (IISEC). , p.1. https://doi.org/10.1109/IISEC59749.2023.10391008.

2. Emre Topçu, Fatih Karaçor. (2023). A comparative investigation on the applicability of the actual precipitation index (API) with the standardized precipitation index (SPI): the case study of Aras Basin, Turkey. Theoretical and Applied Climatology, 154(1-2), p.29. https://doi.org/10.1007/s00704-023-04499-w.

Dimensions

PlumX

Article abstract page views

316

Downloads

Download data is not yet available.