Published

2022-02-07

Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations

Modelado de los grandes depósitos Miocenos de tipo epitermal y pórfido de oro del Cinturón Metalogénico del Cauca de Colombia usando simulaciones Monte Carlo

DOI:

https://doi.org/10.15446/esrj.v25n4.95289

Keywords:

Modeling, Monte Carlo simulations, Northern Andes, Miocene magmatism, Colombia (en)
Modelado; Simulaciones de Monte Carlo; Andes del norte; Magmatismo Mioceno; Cinturón Metalogénico del Cauca (es)

Downloads

Authors

  • Felipe Velasquez Ruiz Departamento de Geología, FCFM, Universidad de Chile
  • Juan Camilo Martínez School of Civil and Environmental Engineering, Vanderbilt University, TN, USA
  • Alejandra Tobón Acevedo School of Geosciences and Environment, Universidad Nacional de Colombia, Sede Medellín, Colombia
  • Alejandra Yepes Metaute Group Digital, FLSmidth, PA, USA
  • Angélica María Zapata Instituto de Geociências, Universidade de Brasília, Brazil
  • Diana Paulina Cataño Salas School of Geosciences and Environment, Universidad Nacional de Colombia, Sede Medellín, Colombia

The Cauca metallogenic belt is an inter-Andean area located along the Cauca-Romeral fault zone, which is made up of a group of twelve Miocene magmatic-hydrothermal Au-Ag-Cu mineral deposits positioned between the Western and Central Cordillera of Colombia. In addition to being a widely developed region in exploration and exploitation with known Au endowments of over 1,700 tons, this area represents an exceptional metallogenetic laboratory for modeling a typical Andean-type mineralization from a calc-alkaline source with high Sr/Y ratios. Efficiency processes such as ion and halogen transport, oxygen fugacity and sulfur content have been extensively studied with a geochemical approach; however, the quantification and modeling of these efficiency processes currently debated. Through multiple iterations using Monte Carlo simulations (N > 2 million), the modeled reservoirs corresponding to the upper crust, using a high flux of dacitic magma of 0.007 km3/year and efficiencies of 1 – 2 %, showed that gold endowments bear heavily with magmatic and hydrothermal Au deposits in the Cauca Metallogenic Belt. Outcomes including Au endowments up to 1,000 tons can be obtained for reservoirs below 400 km3 of hydrous melt in brief mineralization intervals between 40 to 120 ka and for volumes of 400 to 800 km3 in a 120 to 200 ka window. In contrast, the hypothetical reservoirs for the lower and middle crust, through a basaltic calc-alkaline magma flux between 0.0007 and 0.0011 km3/year, an efficiency of ~0.7%, and pressures below 5 kbar, showed sufficient available content of exsolvable H2O and gold to feed the reservoirs in the upper crust or to generate gold deposits from them, but in longer time intervals (>1 Ma).

El Cinturón Metalogénico del Cauca (CMC) es un área interandina ubicada a lo largo de la zona de falla Cauca-Romeral de Colombia. El CMC está compuesto por un grupo de doce depósitos magmático-hidrotermal de Au-Ag-Cu del Mioceno Tardío, ubicados entre la Cordillera Occidental y Central de Colombia. Además de ser una región ampliamente desarrollada en exploración y explotación mineral, con dotaciones de Au conocidas de más de 1700 toneladas, el CMC representa un laboratorio metalogenético excepcional para modelar mineralizaciones de tipo andino a partir de una fuente calco-alcalina con altas razones de Sr/Y. A pesar que los procesos de eficiencia en depósitos magmático-hidrotermal han sido ampliamente estudiados con un enfoque geoquímico, como el transporte de iones y halógenos, la fugacidad de oxígeno y el contenido de azufre, entre otros, la cuantificación y modelado de estos procesos de eficiencia han sido debatidos actualmente. A través de múltiples iteraciones usando simulaciones de Monte Carlo (N>2 millones), modelamos reservorios que corresponden a la corteza superior del CMC. Nuestros resultados aplicando un alto flujo de magma dacítico de 0.007 km3/año y eficiencias entre 1-2%, mostraron que las dotaciones modeladas de oro corresponden fuertemente a las cantidades de Au reportadas de los depósitos magmático-hidrotermal del CMC. Con dicho modelado se pueden obtener dotaciones de Au de hasta 1000 toneladas para reservorios inferiores de 400 km3 de magma hidratado en breves intervalos de mineralización entre 40 y 120 ka, mientras que se obtienen volúmenes de 400 a 800 km3 con un periodo de mineralización entre 120 a 200 ka. Por el contrario, los reservorios modelados para la corteza inferior y media del CMC, a través de un flujo de magma basáltico calco-alcalino entre 0,0007 y 0,0011 km3/año, una eficiencia de ~0,7% y presiones menores a 5 kbar, mostraron suficiente contenido de H2O soluble y oro disponible para alimentar los reservorios en la corteza superior del CMC, o para generar depósitos de oro a partir de ellos, pero en intervalos de tiempo más largos (> 1 Ma).

References

Alonso–Perez, R., Müntener, O., & Ulmer, P. (2009). Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology, 157(4), 541–558. https://doi.org/10.1007/s00410-008-0351-8 DOI: https://doi.org/10.1007/s00410-008-0351-8

ANM. (2014). Producción nacional de minerales. Agencia Nacional de Minería de Colombia. Informe Oro y Plata.

Annen, C. (2009). From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth and Planetary Science Letters, 284(3–4), 409–416. https://doi.org/10.1016/j.epsl.2009.05.006 DOI: https://doi.org/10.1016/j.epsl.2009.05.006

Annen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3), 505–539. https://doi.org/10.1093/petrology/egi084 DOI: https://doi.org/10.1093/petrology/egi084

Bartos, P. J., Garcia, C., & Gil, J. (2017). The nuevo chaquiro Cu-Au-(Mo) porphyry deposit, middle Cauca belt, Colombia: Geology, alteration, mineralization. Economic Geology, 112(2), 275–294. https://doi.org/10.2113/econgeo.112.2.275 DOI: https://doi.org/10.2113/econgeo.112.2.275

Bissig, T., Leal-Mejía, H., Stevens, R. B., & Hart, C. J. R. (2017a). High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet-bearing I-type granodiorite porphyries of the middle Cauca Au-Cu belt, Colombia. Economic Geology, 112(3), 551–568. https://doi.org/10.2113/econgeo.112.3.551

Bissig, T., Leal-Mejía, H., Stevens, R., & Hart, C. (2017b). High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet-bearing I-type granodiorite porphyries of the middle Cauca Au-Cu belt, Colombia. Economic Geology, 112(3), 551–568. https://doi.org/10.2113/econgeo.112.3.551 DOI: https://doi.org/10.2113/econgeo.112.3.551

Blanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J., Cardona, A., Lázaro, C., & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710 DOI: https://doi.org/10.1080/00206814.2014.963710

Borrero, C., & Toro–Toro, L. M. (2016). Vulcanismo de afinidad adaquítica en el Miembro Inferior de la Formación Combia (Mioceno Tardío) al sur de la Subcuenca de Amagá, noroccidente de Colombia. Boletín de Geología, 38(1), 87–100. https://doi.org/10.18273/revbol.v38n1-2016005. DOI: https://doi.org/10.18273/revbol.v38n1-2016005

Cediel, F., Shaw, R. P., & Caceres, C. (2003). Tectonic assembly of the Northern Andean block. In: C. Bartolini, R. T. Buffler, & J. Blickwede (Eds.). The circum-Gulf of Mexico and the Caribbean-hydrocarbon habitats, basin formation, and plate tectonics (American A, pp. 815–848.). DOI: https://doi.org/10.1306/M79877C37

Celada, C., Luengas, C., Velásquez, L., Prieto, D., Cáceres, A., Sepúlveda, A., López, J., Moyano, I., & Prieto, G. (2016). Mapa Metalogenético de Colombia. Servicio Geológico Colombiano. https://srvags.sgc.gov.co/JSViewer/Mapa_Metalogenico_2018/

Chang, W. L., Smith, R. B., Wicks, C., Farrell, J. M., & Puskas, C. M. (2007). Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006. Science, 318(5852), 952–956. https://doi.org/10.1126/science.1146842 DOI: https://doi.org/10.1126/science.1146842

Chiaradia, M. (2020). Gold endowments of porphyry deposits controlled by precipitation efficiency. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-14113-1 DOI: https://doi.org/10.1038/s41467-019-14113-1

Chiaradia, M., & Caricchi, L. (2017). Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Scientific Reports, 7(January 2016), 1–11. https://doi.org/10.1038/srep44523 DOI: https://doi.org/10.1038/srep44523

Gil-Rodríguez, J. (2010). Igneous petrology of the La Colosa Gold-rich porphyry system (Tolima, Colombia). The University of Arizona.

GoldHub. (2020). Gold mine production. Production by Country. https://www.gold.org/goldhub/data/historical-mine-production

Grosse, E. (1926). Estudio geológico del terciario carbonífero de Antioquia en la parte occidental de la cordillera Central de Colombia, entre el río Arma y Sacaojal, ejecutado en los años de 1920–1923. (Dietrich R).

Harangi, S., Downes, H., Kósa, L., Szabó, C., Thirlwall, M. F., Mason, P. R. D., & Mattey, D. (2001). Almandine garnet in calc–alkaline volcanic rocks of the northern Pannonian Basin (eastern–central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42(10), 1813–1844. https://doi.org/10.1093/petrology/42.10.1813 DOI: https://doi.org/10.1093/petrology/42.10.1813

Jaramillo, J. M. (1976). Volcanic rocks of the rio Cauca Valley, Colombia. Rice University. Houston, USA.

Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330–331, 194–220. https://doi.org/10.1016/j.lithos.2019.02.017 DOI: https://doi.org/10.1016/j.lithos.2019.02.017

Lesage, G., Richards, J. P., Muehlenbachs, K., & Spell, T. L. (2013). Geochronology, geochemistry, and fluid characterization of the late miocene buriticá gold deposit, Antioquia department, Colombia. Economic Geology, 108(5), 1067–1097. https://doi.org/10.2113/econgeo.108.5.1067 DOI: https://doi.org/10.2113/econgeo.108.5.1067

Martinón-Torres, M., & Uribe-Villegas, M. A. (2017). Archaeometallurgy in Colombia: Recent Developments. Archaeology International, 20, 80–84. https://doi.org/https://doi.org/10.5334/ai-354 DOI: https://doi.org/10.5334/ai-354

Mason, B. G., Pyle, D. M., & Oppenheimer, C. (2004). The size and frequency of the largest explosive eruptions on Earth. Bulletin of Volcanology, 66(8), 735–748. https://doi.org/10.1007/s00445-004-0355-9 DOI: https://doi.org/10.1007/s00445-004-0355-9

Moss, R., Scott, S. D., & Binns, A. R. A. (2001). Gold content of eastern Manus basin volcanic rocks: Implications for enrichment in associated hydrothermal precipitates. Economic Geology, 96(1), 91–107. https://doi.org/10.2113/gsecongeo.96.1.91 DOI: https://doi.org/10.2113/96.1.91

Naranjo, A., Horner, J., Jahoda, R., Diamond, L. W., Castro, A., Uribe, A., Perez, C., Paz, H., Mejia, C., & Weil, J. (2018). La Colosa Au porphyry deposit, Colombia: Mineralization styles, structural controls, and age constraints. Economic Geology, 113(3), 553–578. https://doi.org/10.5382/econgeo.2018.4562 DOI: https://doi.org/10.5382/econgeo.2018.4562

Nivia, A., Marriner, G. F., Kerr, A. C., & Tarney, J. (2006). The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 423–436. https://doi.org/10.1016/j.jsames.2006.07.002 DOI: https://doi.org/10.1016/j.jsames.2006.07.002

OCDE. (2016). Minería Aurífera en Antioquia. OCDE.

Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H., & Wallace, P. J. (2013). Why do mafic arc magmas contain 4wt% water on average? Earth and Planetary Science Letters, 364, 168–179. https://doi.org/10.1016/j.epsl.2012.11.044 DOI: https://doi.org/10.1016/j.epsl.2012.11.044

Pulido, N. (2003). Seismotectonics of the northern Andes (Colombia) and the development of seismic networks (Bulletin o).

Restrepo, J. J., & Toussaint, J. (2020). Tectonostratigraphic Terranes in Colombia: An Update First Part: Continental Terranes. In : D. Gómez, J. & Mateus–Zabala (Ed.), The Geology of Colombia (Servicio G, pp. 1–27). https://doi.org/https://doi.org/10.32685/pub.esp.35.2019.03 DOI: https://doi.org/10.32685/pub.esp.35.2019.03

Rodríguez, G., & Zapata, G. (2013). Comparative analysis of the Barroso formation and Quebradagrande complex: a volcanic arc tholeiitic-calcoalcaline, segmented by the fault system Romeral in northern andes? Boletín Ciencias de La Tierra, 33, 39-58. https://revistas.unal.edu.co/index.php/rbct/article/view/38686/41111

Sanchez-Alfaro, P., Reich, M., Driesner, T., Cembrano, J., Arancibia, G., Pérez-Flores, P., Heinrich, C. A., Rowland, J., Tardani, D., Lange, D., & Campos, E. (2016). The optimal windows for seismically-enhanced gold precipitation in the epithermal environment. Ore Geology Reviews, 79, 463–473. https://doi.org/10.1016/j.oregeorev.2016.06.005 DOI: https://doi.org/10.1016/j.oregeorev.2016.06.005

Sanematsu, K., Watanabe, K., Duncan, R. A., & Izawa, E. (2006). The history of vein formation determined by 40Ar/39AR dating of adularia in the Hosen-1 vein at the Hishikari epithermal gold deposit, Japan. Economic Geology, 101(3), 685–698. https://doi.org/10.2113/gsecongeo.101.3.685 DOI: https://doi.org/10.2113/gsecongeo.101.3.685

Schütte, P., Chiaradia, M., Barra, F., Villagómez, D., & Beate, B. (2012). Metallogenic features of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed by Re-Os, 40Ar/39Ar, and U-Pb geochronology. Mineralium Deposita, 47, 383–410. https://doi.org/https://doi.org/10.1007/s00126-011-0378-z DOI: https://doi.org/10.1007/s00126-011-0378-z

Sillitoe, R. (2008). Major gold deposits and belts of the North and South American Cordillera: Distribution, tectonomagmatic settings and metallogenetic considerations. Economic Geology, 103, 633–687. DOI: https://doi.org/10.2113/gsecongeo.103.4.663

Simon, A. C., Frank, M. R., Pettke, T., Candela, P. A., Piccoli, P. M., & Heinrich, C. A. (2005). Gold partitioning in melt-vapor-brine systems. Geochimica et Cosmochimica Acta, 69(13), 3321–3335. https://doi.org/10.1016/j.gca.2005.01.028 DOI: https://doi.org/10.1016/j.gca.2005.01.028

Sparks, R. S. J., Self, S., Grattan, J. P., Oppenheimer, C., Pyle, D. M., & Rymer, H. (2005). Supereruptions: Global Effects and Future Threats. In: The Geological Society (p. 24).

Tassinari, C. C. G., Pinzon, F. D., & Buena Ventura, J. (2008). Age and sources of gold mineralization in the Marmato mining district, NW Colombia: A Miocene-Pliocene epizonal gold deposit. Ore Geology Reviews, 33(3–4), 505–518. https://doi.org/10.1016/j.oregeorev.2007.03.002 DOI: https://doi.org/10.1016/j.oregeorev.2007.03.002

Vargas, C. A., & Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc–indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328 DOI: https://doi.org/10.1785/0120120328

Velásquez, F., Cardona, A., & Montes, C. (2019). Caracterización de minerales pesados en sedimentos activos de la cuenca del río Magdalena, Colombia: implicaciones para el análisis de procedencia en el registro fluvial. Revista Boletín de Geología, 41(2), 137–147. https://doi.org/10.18273/revbol.v41n2-2019008 DOI: https://doi.org/10.18273/revbol.v41n2-2019008

Vinasco, C., Cordani, U., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Science, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007 DOI: https://doi.org/10.1016/j.jsames.2006.07.007

Weber, M., Duque, J. F., Hoyos, S., Cárdenas–Rozo, A. L., Gómez, J. &, & Wilson, R. (2020). The Combia Volcanic Province: Miocene post–collisional magmatism in the northern Andes. In: J. Gómez & D. Mateus–Zabala (Eds.), The Geology of Colombia (Servicio G, pp. 355–394). https://doi.org/https://doi.org/10.32685/pub.esp.37.2019.12 DOI: https://doi.org/10.32685/pub.esp.37.2019.12

How to Cite

APA

Velasquez Ruiz, F., Martínez, J. C., Tobón Acevedo, A. ., Yepes Metaute, A., Zapata, A. M. and Cataño Salas, D. P. (2022). Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations. Earth Sciences Research Journal, 25(4), 415–421. https://doi.org/10.15446/esrj.v25n4.95289

ACM

[1]
Velasquez Ruiz, F., Martínez, J.C., Tobón Acevedo, A. , Yepes Metaute, A., Zapata, A.M. and Cataño Salas, D.P. 2022. Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations. Earth Sciences Research Journal. 25, 4 (Feb. 2022), 415–421. DOI:https://doi.org/10.15446/esrj.v25n4.95289.

ACS

(1)
Velasquez Ruiz, F.; Martínez, J. C.; Tobón Acevedo, A. .; Yepes Metaute, A.; Zapata, A. M.; Cataño Salas, D. P. Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations. Earth sci. res. j. 2022, 25, 415-421.

ABNT

VELASQUEZ RUIZ, F.; MARTÍNEZ, J. C.; TOBÓN ACEVEDO, A. .; YEPES METAUTE, A.; ZAPATA, A. M.; CATAÑO SALAS, D. P. Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations. Earth Sciences Research Journal, [S. l.], v. 25, n. 4, p. 415–421, 2022. DOI: 10.15446/esrj.v25n4.95289. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/95289. Acesso em: 16 jan. 2025.

Chicago

Velasquez Ruiz, Felipe, Juan Camilo Martínez, Alejandra Tobón Acevedo, Alejandra Yepes Metaute, Angélica María Zapata, and Diana Paulina Cataño Salas. 2022. “Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations”. Earth Sciences Research Journal 25 (4):415-21. https://doi.org/10.15446/esrj.v25n4.95289.

Harvard

Velasquez Ruiz, F., Martínez, J. C., Tobón Acevedo, A. ., Yepes Metaute, A., Zapata, A. M. and Cataño Salas, D. P. (2022) “Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations”, Earth Sciences Research Journal, 25(4), pp. 415–421. doi: 10.15446/esrj.v25n4.95289.

IEEE

[1]
F. Velasquez Ruiz, J. C. Martínez, A. . Tobón Acevedo, A. Yepes Metaute, A. M. Zapata, and D. P. Cataño Salas, “Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations”, Earth sci. res. j., vol. 25, no. 4, pp. 415–421, Feb. 2022.

MLA

Velasquez Ruiz, F., J. C. Martínez, A. . Tobón Acevedo, A. Yepes Metaute, A. M. Zapata, and D. P. Cataño Salas. “Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations”. Earth Sciences Research Journal, vol. 25, no. 4, Feb. 2022, pp. 415-21, doi:10.15446/esrj.v25n4.95289.

Turabian

Velasquez Ruiz, Felipe, Juan Camilo Martínez, Alejandra Tobón Acevedo, Alejandra Yepes Metaute, Angélica María Zapata, and Diana Paulina Cataño Salas. “Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations”. Earth Sciences Research Journal 25, no. 4 (February 7, 2022): 415–421. Accessed January 16, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/95289.

Vancouver

1.
Velasquez Ruiz F, Martínez JC, Tobón Acevedo A, Yepes Metaute A, Zapata AM, Cataño Salas DP. Modeling of the large Miocene epithermal and porphyry gold deposits of Colombia using Monte Carlo simulations. Earth sci. res. j. [Internet]. 2022 Feb. 7 [cited 2025 Jan. 16];25(4):415-21. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/95289

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

692

Downloads

Download data is not yet available.