Published

2022-05-11

Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems

Estimación de atributos estructurales en un fragmento de bosque tropical natural utilizando imágenes de muy alta resolución obtenidas con sistemas aéreos no tripulados

DOI:

https://doi.org/10.15446/esrj.v26n1.95405

Keywords:

UAS imagery, Crown delineation, Forest height, Canopy Height Models (CHM), REDD (en)
Imágenes UAS, delineación de copa, altura del bosque, modelos de altura del dosel (CHM), REDD (es)

Downloads

Authors

  • Johnny Alexander Vega Gutiérrez Universidad de Medellín, Colombia
  • Sebastián Palomino-Ángel Facultad de Ingeniería. Universidad de Medellín
  • Jesús Anaya Facultad de Ingeniería. Universidad de Medellín

Structural attributes are fundamental biophysical parameters of forest, useful for ecological and environmental monitoring and planning. Canopy height is an important input for the estimation of several biophysical parameters as aboveground biomass and carbon stock, and can be related with forest degradation, deforestation, and emission reduction. Thus, an accurate canopy height estimation is a crucial issue in climate change studies and REDD+ initiatives. VHR imagery from unmanned aircraft systems has been studied as a low cost mean for canopy height estimation at local scales, but the accuracy in the estimation is a factor that determines its utility. We evaluated the ability of VHR imagery from unmanned aircraft systems to derive structural attributes, specifically tree-crown area and height, in a natural tropical forest fragment located in the foothills of the Andes Mountains, in the humid tropical forests of the region known as Biogeographic Chocó, South America. The region is one of the most biodiverse areas of the world and has a high level of endemism, but it is also at higher risk of natural-resource loss. We used a structure from motion approach to derive canopy height models of the forest fragment, and we applied mean-shift algorithms to identify single tree crowns. The accuracy assessment was performed using reference data derived from field campaigns and visually interpretation of VHR imagery. The estimated root-mean-square error of the population of vertical errors for the canopy height model was 3.6 m. The total accuracy for delineating tree crowns was 73.9%. We found that using VHR imagery, specific trees and canopy gaps can be identified and easily monitored, which is an important step in conservation programs. We also discuss the usefulness of these findings in the context of fragmented forests and the tradeoffs between the price of a LIDAR system and the accuracy of this approach.

Los atributos estructurales son parámetros biofísicos fundamentales de un bosque, útiles para el monitoreo y la planificación ecológica y ambiental. La altura del dosel de un árbol es un insumo importante para la estimación de varios parámetros biofísicos como la biomasa aérea y las reservas de carbono, y puede relacionarse con la degradación forestal, la deforestación y la reducción de emisiones. Por lo tanto, una estimación precisa de la altura del dosel es un tema crucial en los estudios de cambio climático y las iniciativas REDD+. Las imágenes VHR de sistemas de aeronaves no tripuladas se han estudiado como un medio de bajo costo para la estimación de la altura del dosel a escalas locales, pero la precisión en su estimación es un factor que determina su utilidad. Se evaluó la capacidad de las imágenes VHR de los sistemas de aeronaves no tripuladas para derivar atributos estructurales, específicamente el área y la altura de las copas de los árboles, en un fragmento de bosque tropical natural ubicado en las estribaciones de la Cordillera de los Andes, en los bosques tropicales húmedos de la región conocida como Chocó Biogeográfico, Sudamérica. La región es una de las áreas con mayor biodiversidad del mundo y tiene un alto nivel de endemismo, pero también tiene el mayor riesgo de pérdida de recursos naturales. Se usó un enfoque de estructura a partir de movimiento para derivar modelos de altura del dosel del fragmento de bosque, y se aplicaron algoritmos de desplazamiento medio para identificar las copas de árbol. La evaluación de la precisión se realizó utilizando datos de referencia derivados de campañas de campo e interpretación visual de imágenes VHR. El error cuadrático medio estimado de la población de errores verticales para el modelo de altura del dosel fue de 3,6 m. La precisión total para delinear las copas de los árboles fue del 73,9%. Se encuentra que utilizando imágenes VHR, se pueden identificar y monitorear fácilmente árboles específicos y brechas, lo cual es un paso importante en los programas de conservación. También se discute la utilidad de estos hallazgos en el contexto de bosques fragmentados y las compensaciones entre el precio de un sistema LIDAR y la precisión de este enfoque.

References

Anaya, J. A. (2015). Incendios en Colombia y estimación de emisión de gases efecto invernadero por quema de biomasa: una aproximación desde la teledetección. Editorial Universidad de Medellín. ISBN 978-958-8922-01-0. 167pp.

Anaya, J. A., Escobar-Martínez, J. F., Massone, H., Booman, G., Quiroz-Londoño, O. M., Cañón-Barriga, C. C., Montoya-Jaramillo, L. J., Palomino-Ángel, S. (2017). Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS. DYNA, 84, 186. https://doi.org/10.15446/dyna.v84n201.58600 DOI: https://doi.org/10.15446/dyna.v84n201.58600

Anaya, J. A., Gutiérrez-Vélez, V. H., Pacheco-Pascagaza, A. M., Palomino-Ángel, S., Han, N., Balzter, H. (2020). Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia. Remote Sensing, 12, 1–16. https://doi.org/10.3390/RS12081235 DOI: https://doi.org/10.3390/rs12081235

Barnes, C., Balzter, H., Barrett, K., Eddy, J., Milner, S., Suárez, J.C. (2017). Individual tree crown delineation from airborne laser scanning for diseased larch forest stands. Remote Sensing, 9, 231. https://doi.org/10.3390/rs9030231 DOI: https://doi.org/10.3390/rs9030231

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. In: Leonardis, B. H. A. (Ed.). Computer Vision – ECCV 2006. Lecture Notes in Computer Science, 3951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11744023_32 DOI: https://doi.org/10.1007/11744023_32

Bergen, K. M., Goetz, S. J., Dubayah, R. O., Henebry, G. M., Hunsaker, C. T., Imhoff, M. L., Nelson, R. F., Parker, G. G., & Radeloff, V. C. (2009). Remote sensing of vegetation 3‐D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions. Journal of Geophysical Research. Biogeosciences, 114. https://doi.org/10.1029/2008JG000883. DOI: https://doi.org/10.1029/2008JG000883

Bispo, P. D. C., Pardini, M., Papathanassiou, K. P., Kugler, F., Balzter, H., Rains, D., ... Araujo, L. S. (2019). Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry. Remote Sensing of Environment, 232, 111194. https://doi.org/10.1016/j.rse.2019.05.013. DOI: https://doi.org/10.1016/j.rse.2019.05.013

Bonnet, S., Lisein, J., & Lejeune, P. (2017). Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands. International Journal of Remote Sensing, 38, 5310–5337. https://doi.org/10.1080/01431161.2017.1338839. DOI: https://doi.org/10.1080/01431161.2017.1338839

Bonnet, S., Toromanoff, F., Bauwens, S., Michez, A., Dedry, L., & Lejeune, P. (2013). Principes de base de la télédétection et ses potentialités comme outil de caractérisation de la ressource forestière–II. LiDAR aérien. Forêt Wallonne 28–41.

Camacho, V. B., & Díaz, R. G. (2018). Mangrove Economy: etho-politics and social change. Entramado, 14, 104–110. https://doi.org/10.18041/entramado.2018v14n1.27156. DOI: https://doi.org/10.18041/entramado.2018v14n1.27156

Chiabrando, F., Donadio, E., & Rinaudo, F. (2015). SfM for orthophoto generation: A winning approach for cultural heritage knowledge. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. Taipei, 91–98. https://doi.org/10.5194/isprsarchives-XL-5-W7-91-2015. DOI: https://doi.org/10.5194/isprsarchives-XL-5-W7-91-2015

Chianucci, F., Disperati, L., Guzzi, D., Bianchini, D., Nardino, V., Lastri, C., Rindinella, A., & Corona, P. (2016). Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. International Journal of Applied Earth Observation and Geoinformation, 47, 60–68. https://doi.org/10.1016/j.jag.2015.12.005. DOI: https://doi.org/10.1016/j.jag.2015.12.005

Clinton, N., Holt, A., Scarborough, J., Yan, L., & Gong, P. (2010). Accuracy Assessment Measures for Object-based Image Segmentation Goodness. Photogrammetric Engineering & Remote Sensing, 76(3), 289–299. https://doi.org/10.14358/PERS.76.3.289. DOI: https://doi.org/10.14358/PERS.76.3.289

Dandois, J. P., & Ellis, E. C. (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing Environment, 136, 259–276. https://doi.org/10.1016/J.RSE.2013.04.005. DOI: https://doi.org/10.1016/j.rse.2013.04.005

Dandois, J. P., Olano, M., & Ellis, E. C. (2015). Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sensing, 7, 13895–13920. https://doi.org/10.3390/rs71013895. DOI: https://doi.org/10.3390/rs71013895

Drauschke, M., Bartelsen, J., & Reidelstuerz, P. (2014). Towards UAV-based forest monitoring. In: Proceedings of the Workshop on UAV-Based Remote Sensing Methods for Monitoring Vegetation. Geographisches Institut Der Universität Zu Köln—Kölner Geographische Arbeiten. Cologne, Germany, 21–32.

Ene, L., Næsset, E., & Gobakken, T. (2012). Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. International Journal of Remote Sensing, 33, 5171–5193. https://doi.org/10.1080/01431161.2012.657363. DOI: https://doi.org/10.1080/01431161.2012.657363

Fagua, J. C., & Ramsey, R. (2019). Geospatial modeling of land cover change in the Chocó-Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS One, 14, 1–25. https://doi.org/10.1371/journal.pone.0211324. DOI: https://doi.org/10.1371/journal.pone.0211324

Galeano, G. (2000). Forest use at the Pacific Coast of Choco, Colombia: A quantitative approach. Economic Botany, 54, 358–376. https://doi.org/10.1007/BF02864787. DOI: https://doi.org/10.1007/BF02864787

Galeano, G., Suárez, S., & Balslev, H. (1998). Vascular plant species count in a wet forest in the Choco area on the Pacific coast of Colombia. Biodiversity & Conservation, 7, 1563–1575. https://doi.org/10.1023/A:1008802624275. DOI: https://doi.org/10.1023/A:1008802624275

Giannetti, F., Chirici, G., Gobakken, T., Næsset, E., Travaglini, D., & Puliti, S. (2018). A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sensing of Environment, 213, 195–205. https://doi.org/10.1016/j.rse.2018.05.016. DOI: https://doi.org/10.1016/j.rse.2018.05.016

Gentry, A. H. (1986). Species richness and floristic composition of Chocó region plant. Caldasia, 15, 71–91.

Gleason, C. J., & Jungho, I. (2012). A fusion approach for tree crown delineation from Lidar data. Photogrammetric Engineering and Remote Sensing, 78, 679–692. https://doi.org/10.14358/PERS.78.7.679. DOI: https://doi.org/10.14358/PERS.78.7.679

GOFC-GOLD (2017). A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing. Eds: GOFCGOLD & GEO BON. Report version UNCBD COP-13, GOFC-GOLD Land Cover Project Office, Wageningen University, The Netherlands. ISSN: 2542-6729.

Gougeon, F., & Leckie, D. (2003). Forest information extraction from high spatial resolution images using an individual tree crown approach. Pacific Forestry Centre. Victoria, British Columbia. Information Report BC-X-396. ISSN 0830-0453. ISBN 0-662-33272-5.

Gougeon, F. A. (1995). A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Canadian Journal of Remote Sensing, 21, 274–284. https://doi.org/10.1080/07038992.1995.10874622. DOI: https://doi.org/10.1080/07038992.1995.10874622

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V, Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342(80), 850–853. https://doi.org/10.1126/science.1244693. DOI: https://doi.org/10.1126/science.1244693

He, Z., Fan, B., Cheng, T. C. E., Wang, S.-Y., Tan, C.-H. (2016). A mean-shift algorithm for large-scale planar maximal covering location problems. European Journal of Operational Research, 250, 65–76. https://doi.org/10.1016/J.EJOR.2015.09.006. DOI: https://doi.org/10.1016/j.ejor.2015.09.006

Huang, X., & Zhang, L. (2008). An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 46, 4173–4185. https://doi.org/10.1109/TGRS.2008.2002577. DOI: https://doi.org/10.1109/TGRS.2008.2002577

Joshi, N. P., Mitchard, E. T. A., Schumacher, J., Johannsen, V. K., Saatchi, S., & Fensholt, R. (2015). L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark. Remote Sensing, 7(4), 4442–4472. http://doi.org/10.3390/rs70404442. DOI: https://doi.org/10.3390/rs70404442

Kadmon, R., & Harari-Kremer, R. (1999). Studying Long-Term Vegetation Dynamics Using Digital Processing of Historical Aerial Photographs. Remote Sensing of Environment, 68, 164–176. https://doi.org/10.1016/S0034-4257(98)00109-6. DOI: https://doi.org/10.1016/S0034-4257(98)00109-6

Kaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., & Schmidt, J. (2014). Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing, 6, 7050–7080. https://doi.org/10.3390/rs6087050. DOI: https://doi.org/10.3390/rs6087050

Ke, Y., & Quackenbush, L. J. (2011). A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. International Journal of Remote Sensing, 32, 4725–4747. https://doi.org/10.1080/01431161.2010.494184. DOI: https://doi.org/10.1080/01431161.2010.494184

Kellndorfer, J., Walker, W., Pierce, L., Dobson, C., Fites, J. A., Hunsaker, C., & Clutter, M. (2004). Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets. Remote Sensing of Environment, 93(3), 339–358. http://doi.org/10.1016/j.rse.2004.07.017. DOI: https://doi.org/10.1016/j.rse.2004.07.017

Komárek, J., Klouček, T., & Prošek, J. (2018). The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types? International Journal of Applied Earth Observation and Geoinformation, 71, 9–19. https://doi.org/10.1016/j.jag.2018.05.003. DOI: https://doi.org/10.1016/j.jag.2018.05.003

Kugler, F., Schulze, D., Hajnsek, I., Pretzsch, H., & Papathanassiou, K. P. (2014). TanDEM-X Pol-InSAR performance for forest height estimation. IEEE Transactions on Geoscience and Remote Sensing, 52, 6404–6422. https://doi.org/10.1109/TGRS.2013.2296533. DOI: https://doi.org/10.1109/TGRS.2013.2296533

Kumar, S., Khati, G., Chandola, S., Agrawal, S., & Kushwaha, S. (2017). Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest. Advances in Space Research, 60(3), 571-586. https://doi.org/10.1016/j.asr.2017.04.018. DOI: https://doi.org/10.1016/j.asr.2017.04.018

Lavalle, M., & Hensley, S. (2015). Extraction of Structural and Dynamic Properties of Forests from Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation. IEEE Transactions on Geoscience and Remote Sensing, 53(9), 4752–4767. http://doi.org/10.1109/TGRS.2015.2409066. DOI: https://doi.org/10.1109/TGRS.2015.2409066

Leckie, D., Gougeon, F., Hill, D., Quinn, R., Armstrong, L., & Shreenan, R. (2003). Combined high-density lidar and multispectral imagery for individual tree crown analysis. Canadian Journal of Remote Sensing, 29, 633–649. https://doi.org/10.5589/m03-024. DOI: https://doi.org/10.5589/m03-024

Lee, S. K., & Fatoyinbo, T. E. (2015). TanDEM-X Pol-InSAR Inversion for Mangrove Canopy Height Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3608–3618. http://doi.org/10.1109/JSTARS.2015.2431646. DOI: https://doi.org/10.1109/JSTARS.2015.2431646

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., & Lejeune, P. (2013). A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests, 4, 922–944. https://doi.org/10.3390/f4040922. DOI: https://doi.org/10.3390/f4040922

Liu, Y., Bian, L., Meng, Y., Wang, H., Zhang, S., Yang, Y., Shao, X., & Wang, B. (2012). Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 144–156. https://doi.org/10.1016/J.ISPRSJPRS.2012.01.007. DOI: https://doi.org/10.1016/j.isprsjprs.2012.01.007

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60, 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94. DOI: https://doi.org/10.1023/B:VISI.0000029664.99615.94

Marpu, P. R., Neubert, M., Herold, H., & Niemeyer, I. (2010). Enhanced evaluation of image segmentation results. Journal of Spatial Science, 55, 55–68. https://doi.org/10.1080/14498596.2010.487850. DOI: https://doi.org/10.1080/14498596.2010.487850

Matsumoto, H., Ohtani, M., & Washitani, I. (2017). Tree Crown Size Estimated Using Image Processing: A Biodiversity Index for Sloping Subtropical Broad-Leaved Forests. Tropical Conservation Science, 10. https://doi.org/10.1177/1940082917721787. DOI: https://doi.org/10.1177/1940082917721787

Meyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., & Chave, J. (2019). Forest degradation and biomass loss along the Chocó region of Colombia. Carbon Balance and Management, 14, 1–15. https://doi.org/10.1186/s13021-019-0117-9. DOI: https://doi.org/10.1186/s13021-019-0117-9

Michez, A., Piégay, H., Jonathan, L., Claessens, H., & Lejeune, P. (2016). Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. International Journal of Applied Earth Observation and Geoinformation, 44, 88–94. https://doi.org/10.1016/J.JAG.2015.06.014. DOI: https://doi.org/10.1016/j.jag.2015.06.014

Mielcarek, M., K. Stereńczak & A. Khosravipour. (2018). Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. International Journal of Applied Earth Observation and Geoinformation, 71, 132–143. https://doi.org/10.1016/j.jag.2018.05.002. DOI: https://doi.org/10.1016/j.jag.2018.05.002

Ministerio de Ambiente y Desarrollo Sostenible (MADS), & Programa Naciones Unidas para el Desarrollo (PNUD). (2014). Quinto Informe Nacional de la Biodiversidad de Colombia ante el Convenio de Diversidad Biológica. Bogotá D.C., Colombia. 101 pp.

Miraki, M., Sohrabi, H., Fatehi, P., & Kneubuehler, M. (2021). Individual tree crown delineation from high-resolution UAV images in broadleaf forest. Ecological Informatics, 61, 101207. ISSN 1574-9541. https://doi.org/10.1016/j.ecoinf.2020.101207. DOI: https://doi.org/10.1016/j.ecoinf.2020.101207

Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9, 311–321. https://doi.org/10.1016/j.jag.2006.10.002. DOI: https://doi.org/10.1016/j.jag.2006.10.002

Montaghi, A., Larsen, R., & Greve, M. H. (2013). Accuracy assessment measures for image segmentation goodness of the land parcel identification system (LPIS) in Denmark. Remote Sensing Letters, 4, 946–955. https://doi.org/10.1080/2150704X.2013.817709. DOI: https://doi.org/10.1080/2150704X.2013.817709

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501. DOI: https://doi.org/10.1038/35002501

Nikolakopoulos, K. G., Soura, K., Koukouvelas, I. K., & Argyropoulos, N. G. (2017). UAV vs classical aerial photogrammetry for archaeological studies. Journal of Archaeological Science: Reports, 14, 758–773. https://doi.org/10.1016/j.jasrep.2016.09.004. DOI: https://doi.org/10.1016/j.jasrep.2016.09.004

Novotny, J., Hanus, J., Lukes, P., & Kaplan, V. (2011). Individual tree crowns delineation using Local Maxima approach and seeded region growing technique. In: Proceedings of Symposium GIS Ostrava, 27–39.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI: https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Ota, T., Ogawa, M., Mizoue, N., Fukumoto, K., & Yoshida, S. (2017). Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests. Forests, 8(9), 343. https://doi.org/10.3390/f8090343. DOI: https://doi.org/10.3390/f8090343

OTB. (2018). Orfeo Toolbox [www Document]. Orfeo Toolbox. URL https://www.orfeo-toolbox.org/ (accessed 4.19.18).

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(80), 988–993. https://doi.org/10.1126/science.1201609. DOI: https://doi.org/10.1126/science.1201609

Panagiotidis, D., Abdollahnejad, A., Surový, P., & Chiteculo, V. (2016). Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing, 1–19. https://doi.org/10.1080/01431161.2016.1264028. DOI: https://doi.org/10.1080/01431161.2016.1264028

Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S., & Koh, L. P. (2014). Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5, 1481–1507. https://doi.org/10.3390/f5061481. DOI: https://doi.org/10.3390/f5061481

Patino, J. E., & Estupinan-Suarez, L. (2016). Hotspots of Wetland Area Loss in Colombia. Wetlands, 36, 935–943. https://doi.org/10.1007/s13157-016-0806-z. DOI: https://doi.org/10.1007/s13157-016-0806-z

Pineux, N., Lisein, J., Swerts, G., Bielders, C. L., Lejeune, P., Colinet, G., & Degré, A. (2017). Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology, 280, 122–136. https://doi.org/10.1016/J.GEOMORPH.2016.12.003. DOI: https://doi.org/10.1016/j.geomorph.2016.12.003

Pouliot, D., King, D. J., Bell, F. W., & Pitt, D. G. (2002). Automated tree crown detection and delineation in high- resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment, 82, 322–334. https://doi.org/10.1016/S0034-4257(02)00050-0. DOI: https://doi.org/10.1016/S0034-4257(02)00050-0

Puliti, S., Ørka, H., Gobakken, T., & Næsset, E. (2015). Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sensing, 7, 9632–9654. https://doi.org/10.3390/rs70809632. DOI: https://doi.org/10.3390/rs70809632

Qiu, L., Jing, L., Hu, B., Li, H., & Tang, Y. (2020). A new individual tree crown delineation method for high resolution multispectral imagery. Remote Sensing, 12, 1–21. https://doi.org/10.3390/rs12030585. DOI: https://doi.org/10.3390/rs12030585

Rutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Rufi’ie, Hergoualc’h, K., Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology Management, 307, 219–225. https://doi.org/10.1016/j.foreco.2013.07.013. DOI: https://doi.org/10.1016/j.foreco.2013.07.013

Sasaki, N., Asner, G. P., Knorr, W., Durst, P. B., Priyadi, H. R., & Putz, F. E. (2011). Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism. IForest, 4, 1–6. https://doi.org/10.3832/ifor0556-004. DOI: https://doi.org/10.3832/ifor0556-004

Sierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Herrera, M. A., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026. DOI: https://doi.org/10.1016/j.foreco.2007.03.026

Singh, M., Evans, D., Tan, B. S., & Nin, C. S. (2015). Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data. PLoS One, 11(4), e0121558. https://doi.org/10.1371/journal.pone.0121558 DOI: https://doi.org/10.1371/journal.pone.0121558

Solberg, S., Naesset, E., & Bollandsas, O. M. (2006). Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest. Photogrammetric Engineering & Remote Sensing, 72, 1369–1378. https://doi.org/10.14358/PERS.72.12.1369. DOI: https://doi.org/10.14358/PERS.72.12.1369

Steinmann, K., Mandallaz, D., Ginzler, C., & Lanz, A. (2013). Small area estimations of proportion of forest and timber volume combining Lidar data and stereo aerial images with terrestrial data. Scandinavian Journal of Forest Research, 28, 373–385. https://doi.org/10.1080/02827581.2012.754936. DOI: https://doi.org/10.1080/02827581.2012.754936

Swinfield, T., Lindsell, J. A., Williams, J. V., Harrison, R. D., Habibi, A., Gemita, E., Schönlieb, C. B., & Coomes, D. A. (2019). Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion. Remote Sensing, 11(8), 928. https://doi.org/10.3390/rs11080928. DOI: https://doi.org/10.3390/rs11080928

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., & Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9, 697–720. https://doi.org/10.5194/essd-9-697-2017. DOI: https://doi.org/10.5194/essd-9-697-2017

United Nations Office on Drugs and Crime - UNODC. (2017). Survey of territories affected by illicit crops – 2016. ISSN - 2011-0596.

Wagner, F. H., Ferreira, M. P., Sanchez, A., Hirye, M. C. M., Zortea, M., Gloor, E., Phillips, O. L., de Souza Filho, C. R., Shimabukuro, Y. E., & Aragão, L. E. O. C. (2018). Individual tree crown delineation in a highly diverse tropical forest using very high-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 362–377. https://doi.org/10.1016/j.isprsjprs.2018.09.013. DOI: https://doi.org/10.1016/j.isprsjprs.2018.09.013

Weidner, U. (2008). Contribution to the assessment of segmentation quality for remote sensing applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7), 479–484.

White, J., Wulder, M., Vastaranta, M., Coops, N., Pitt, D., & Woods, M. (2013). The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning. Forests, 4, 518–536. https://doi.org/10.3390/f4030518. DOI: https://doi.org/10.3390/f4030518

Whitehead, K., & Hugenholtz, C. H. (2014). Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges. Journal of Unmanned Vehicle Systems, 2, 69–85. https://doi.org/10.1139/juvs-2014-0006. DOI: https://doi.org/10.1139/juvs-2014-0006

WWF Colombia. (2008). Plan de Acción del Complejo Ecorregional Chocó-Darién. ISBN: 978-958-8353-04-3.

Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high-resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55, 89–99. https://doi.org/10.1016/J.EJA.2014.01.004. DOI: https://doi.org/10.1016/j.eja.2014.01.004

Zou, Z., Lin, X. (2013). Geoinformatics production for urban disasters risk reduction: A zero cost solution. In: Communications in Computer and Information Science, 313–324. https://doi.org/10.1007/978-3-642-45025-9_32 DOI: https://doi.org/10.1007/978-3-642-45025-9_32

How to Cite

APA

Vega Gutiérrez, J. A., Palomino-Ángel, S. and Anaya, J. (2022). Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems. Earth Sciences Research Journal, 26(1), 1–12. https://doi.org/10.15446/esrj.v26n1.95405

ACM

[1]
Vega Gutiérrez, J.A., Palomino-Ángel, S. and Anaya, J. 2022. Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems. Earth Sciences Research Journal. 26, 1 (May 2022), 1–12. DOI:https://doi.org/10.15446/esrj.v26n1.95405.

ACS

(1)
Vega Gutiérrez, J. A.; Palomino-Ángel, S.; Anaya, J. Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems. Earth sci. res. j. 2022, 26, 1-12.

ABNT

VEGA GUTIÉRREZ, J. A.; PALOMINO-ÁNGEL, S.; ANAYA, J. Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems. Earth Sciences Research Journal, [S. l.], v. 26, n. 1, p. 1–12, 2022. DOI: 10.15446/esrj.v26n1.95405. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/95405. Acesso em: 28 mar. 2025.

Chicago

Vega Gutiérrez, Johnny Alexander, Sebastián Palomino-Ángel, and Jesús Anaya. 2022. “Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems”. Earth Sciences Research Journal 26 (1):1-12. https://doi.org/10.15446/esrj.v26n1.95405.

Harvard

Vega Gutiérrez, J. A., Palomino-Ángel, S. and Anaya, J. (2022) “Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems”, Earth Sciences Research Journal, 26(1), pp. 1–12. doi: 10.15446/esrj.v26n1.95405.

IEEE

[1]
J. A. Vega Gutiérrez, S. Palomino-Ángel, and J. Anaya, “Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems”, Earth sci. res. j., vol. 26, no. 1, pp. 1–12, May 2022.

MLA

Vega Gutiérrez, J. A., S. Palomino-Ángel, and J. Anaya. “Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems”. Earth Sciences Research Journal, vol. 26, no. 1, May 2022, pp. 1-12, doi:10.15446/esrj.v26n1.95405.

Turabian

Vega Gutiérrez, Johnny Alexander, Sebastián Palomino-Ángel, and Jesús Anaya. “Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems”. Earth Sciences Research Journal 26, no. 1 (May 11, 2022): 1–12. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/95405.

Vancouver

1.
Vega Gutiérrez JA, Palomino-Ángel S, Anaya J. Structural attributes estimation in a natural tropical forest fragment using very high-resolution imagery from unmanned aircraft systems. Earth sci. res. j. [Internet]. 2022 May 11 [cited 2025 Mar. 28];26(1):1-12. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/95405

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 12
  • Mentions
  • News: 1

Article abstract page views

473

Downloads