Published

2022-02-07

Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models

Factores que afectan los umbrales topográficos en la ocurrencia de erosión y su manejo a través de modelos predictivos de aprendizaje automático

DOI:

https://doi.org/10.15446/esrj.v25n4.95748

Keywords:

boosted regression tree, erosion, prediction, reliability, support vector machine (en)
árbol de regresión optimizado; erosión; predición; confiabilidad; máquinas de vectores de soporte; (es)

Downloads

Authors

  • Mahdieh Valipour Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran
  • Neda Mohseni Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran
  • Seyed Reza Hosseinzadeh Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

Soil degradation induced by gully erosion represents a worldwide problem in the many arid and semi-arid countries, such as Iran. This study assessed: (1) the importance of variables that control gully erosion using the Boruta algorithm, (2) the relationship among causative variables and gullied locations using the evidential belief function model (EBF), and (3) gully erosion development using the algorithms of boosted regression tree (BRT) and support vector machine (SVM). Based on the results of the Boruta algorithm, slope, land use, lithology, plan curvature, and elevation were the most important factors controlling gully erosion. The results of the EBF model showed the predominance of gully erosion on rangeland and loess-marl deposition. The predominance of gullied locations on the concave positions, with the slope of 5°–20° in the vicinity of drainage lines, illustrates a preferential topographic zone and, therefore, a terrain threshold for gullying. The correlation of gullied locations with rangelands and weak soils in concave positions demonstrates that the interactions among soil characteristics, topography, and land use stimulate a low topographic threshold for gullies development. These relationships are consistent with the threshold concept that a given soil, land use, and climate within a given landscape encourage a given drainage area and a critical soil surface slope that are necessary for gully incision. Furthermore, the BRF-SVM had the highest efficiency and the lowest root mean square error, followed by BRT for predicting gully development, compared with LN-SVM algorithm. The application of two machine learning methods for predicting the gully head cut susceptibility in northern Iran showed that the maps generated by these algorithms could provide an appropriate strategy for geo-conservation and restoration efforts in gullying-prone areas.

La degradación del suelo por erosión representa un problema generalizado para aquellos países con suelos áridos y semiáridos como Iran. En este estudio se miden los siguientes aspectos: 1. La importancia de las variables que controlan la erosión a través del algoritmo de Boruta; 2. La relación entre causales y los lugares erosionados a través del modelo de confianza (EBF, del inglés evidential belief function model), y 3. desarrollo de la erosión a través de los algoritmos árboles de regresión potenciado (BRT, Boosted Regression Tree) y máquinas de vectores de soporte (SVM, support vector machine). Con base en los resultados del algoritmo de Boruta, la inclinación, el uso del suelo, la litología, la curvatura y la elevación son los factores más importantes en el control de la erosión. Los resultados del modelo de confianza muestran la predominancia de la erosión en los pastizales y en las deposiciones de marga de loess. La predominancia de lugares erosionados en puntos cóncavos, con una pendiente de entre 5 y 20 grados junto a líneas de drenaje, ejemplifica una zona topográfica preferencial y, además, un umbral en el terreno para la erosión. La correlación de zonas erosionadas con pastizales y suelos débiles en posiciones cóncavas demuestra que las interacciones entre las características del suelo, la topografía, y el estudio del suelo estimulan un umbral bajo para el desarrollo de la erosión. Estas relaciones se enmarcan en el concepto de que ante un tipo de suelo dado, el uso que se le brinde y el clima en un paisaje específico se crea una área de drenaje y una pendiente con superficie de suelo crítico, necesarios para un corte erosionado. Además, los algoritmos BRF-SVM tuvieron la mayor eficiencia y el menor error cuadrático medio, seguido por el BRT en la predicción del desarrollo de erosión frente al algortimo LN-SVM. La aplicación de dos métodos de aprendizaje automático para para predecir la susceptibilidad de corte en el norte de Irán muestra que los mapas generados por estos algortimos pueden proveer una estrategia apropiada para la geoconservación y los esfuerzos de restauración en zonas propensas a la erosión.

References

Arabameri, A., Asadi, N. O., Saha, S., Roy, J., Pradhan, B., Tiefenbacher, J. P., & Thi Ngo, P. T. (2020). Novel Ensemble Approaches of machine learning techniques in modeling the gully erosion susceptibility. Remote Sensing, 12(11), 1-31. https://doi.org/10.3390/rs12111890

Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H. R., & Lombardo, L. (2018). Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degradation & Development, 29(11), 4035–4049. https://doi.org/10.1002/ldr.3151

Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., & Afzali, S. F. (2019). Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340, 55-69. https://doi.org/10.1016/j.geoderma.2018.12.042

Aertsen, W., Kint, V., Orshoven, J. V., Özkan, K. & Muys, B. (2010). Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8), 1119–1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007

Althuwaynee, O. F., Pradhan, B., Park, H. J. & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36. https://doi.org/10.1016/j.catena.2013.10.011

Arabameri, A., Asadi, N. O., Saha, S., Roy, J., Pradhan, B., Tiefenbacher, J. P., & Thi Ngo, P. T. (2020). Novel Ensemble Approaches of machine learning techniques in modeling the gully erosion susceptibility. Remote Sensing, 12(11), 1-31. https://doi.org/10.3390/rs12111890 DOI: https://doi.org/10.3390/rs12111890

Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H. R., & Lombardo, L. (2018). Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degradation & Development, 29(11), 4035–4049. https://doi.org/10.1002/ldr.3151 DOI: https://doi.org/10.1002/ldr.3151

Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., & Afzali, S. F. (2019). Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340, 55-69. https://doi.org/10.1016/j.geoderma.2018.12.042 DOI: https://doi.org/10.1016/j.geoderma.2018.12.042

Aertsen, W., Kint, V., Orshoven, J. V., Özkan, K. & Muys, B. (2010). Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8), 1119–1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007 DOI: https://doi.org/10.1016/j.ecolmodel.2010.01.007

Althuwaynee, O. F., Pradhan, B., Park, H. J. & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36. https://doi.org/10.1016/j.catena.2013.10.011 DOI: https://doi.org/10.1016/j.catena.2013.10.011

Bell, J. C., Butler, C. A. & Thompson, J. A. (1995). Soil terrain modeling for site-specific agricultural management. In: Robert, P. C., Rust, R. H., Larson, W. E.(Eds.), Site-Specific Management for Agricultural Systems. American Society of Agronomy, Madison, WI, p. 209. DOI: https://doi.org/10.2134/1995.site-specificmanagement.c16

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D. & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuses reflectance spectroscopy. Geoderma, 132(2-3), 273–290. https://doi.org/10.1016/j.geoderma.2005.04.025 DOI: https://doi.org/10.1016/j.geoderma.2005.04.025

Carranza, E. J. M., Woldai, T. & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research, 14(1), 47–63. https://doi.org/10.1007/s11053-005-4678-9 DOI: https://doi.org/10.1007/s11053-005-4678-9

Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V. & Märker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology, 204(1), 399–411. https://doi.org/10.1016/j.geomorph.2013.08.021 DOI: https://doi.org/10.1016/j.geomorph.2013.08.021

Chaplot, V., Coadou, B. E., Silvera, N., & Valentinb, C. (2005). Spatial and temporal assessment of linear erosion in catchment under sloping lands of Northern Laos. Catena, 63(2-3), 167–184. https://doi.org/10.1016/j.catena.2005.06.003 DOI: https://doi.org/10.1016/j.catena.2005.06.003

Chen, W., Lei, X., Chakrabortty, R., Pal, S. C., Sahana, M. & Janizadeh, S. (2021). Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. Journal of Environmental Management, 284, 112015-112015. https://doi.org/10.1016/j.jenvman.2021.112015 DOI: https://doi.org/10.1016/j.jenvman.2021.112015

Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Springer, Berlin, Heidelberg, 38(2), 325–339. DOI: https://doi.org/10.1214/aoms/1177698950

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77 (4), 802–813. http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x DOI: https://doi.org/10.1111/j.1365-2656.2008.01390.x

Ekholm, P., & Lehtoranta, J. (2012). Does control of soil erosion inhibit aquatic eutrophication. Journal of Environmental Management, 93(1), 140–146. https://doi.org/10.1016/j.jenvman.2011.09.010 DOI: https://doi.org/10.1016/j.jenvman.2011.09.010

Fox, G. A., Sheshukov, A., Cruse, R., Kolar, R. L., Guertault, L., Gesch, K. R., & Dutnell, R. C. (2016). Reservoir sedimentation and upstream sediment sources: perspectives and future research needs on stream bank and gully erosion. Journal of Environmental Management, 57(5), 945–955. https://doi.org/10.1007/s00267-016-0671-9 DOI: https://doi.org/10.1007/s00267-016-0671-9

Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S. & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment, 668, 124-138. https://doi.org/10.1016/j.scitotenv.2019.02.436 DOI: https://doi.org/10.1016/j.scitotenv.2019.02.436

Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H. R., & Van Oost, K., (2019). Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment, 664, 1117-1132. https://doi.org/10.1016/j.scitotenv.2019.02.093 DOI: https://doi.org/10.1016/j.scitotenv.2019.02.093

Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A., & Mansor, S. (2017). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9(1), 49–69. https://doi.org/10.1080/19475705.2017.1407368 DOI: https://doi.org/10.1080/19475705.2017.1407368

Kavzoglu, T., Sahin, E.K. & Colkesen, I. (2013). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439. https://doi.org/10.1007/s10346-013-0391-7 DOI: https://doi.org/10.1007/s10346-013-0391-7

Kursa, M. B., Jankowski, A., & Rudnicki, W. R. (2010). Boruta–a system for feature selection. Fundamenta Informaticae, 101(4), 271–285. https://doi.org/10.3233/FI-2010-288 DOI: https://doi.org/10.3233/FI-2010-288

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. Forest, 2(3), 18–22.

Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., & Mosavi, A. (2020). GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing, 12, 1-25. https://doi.org/10.3390/rs12152478 DOI: https://doi.org/10.3390/rs12152478

Lee, M. J., Choi, J. W., Oh, H. J., Won, J. S., Park, I., & Lee, S. (2012). Ensemble based landslide susceptibility maps in Jinbu area, Korea. Environmental Earth Sciences, 67, 23–37. https://doi.org/10.1007/s12665-011-1477-y DOI: https://doi.org/10.1007/s12665-011-1477-y

Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboyedoff, M., & Kanevski, M. (2014). Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences, 46(1), 33–57. http://dx.doi.org/10.1007/s11004-013-9511-0 DOI: https://doi.org/10.1007/s11004-013-9511-0

Moore, I. D., Gessler, P. E., Nielsen, G. A. E. & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443–452. https://doi.org/10.2136/sssaj1993.03615995005700020026x DOI: https://doi.org/10.2136/sssaj1993.03615995005700020026x

Marjanović, M., Kovačević, M., Bajat, B. & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225–234. https://doi.org/10.1016/j.enggeo.2011.09.006 DOI: https://doi.org/10.1016/j.enggeo.2011.09.006

Naghibi, S. A., Pourghasemi, H. R. & Dixon, B. (2015). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1-27. https://dx.doi.org/10.1007/s10661-015-5049-6 DOI: https://doi.org/10.1007/s10661-015-5049-6

Ollobarren, P., Capra, A., Gelsomino, A., & La Spada, C., (2016). Effects of ephemeral gully erosion on soil degradation in a cultivated area in Sicily (Italy). Catena, 145, 334-345. https://doi.org/10.1016/j.catena.2016.06.031 DOI: https://doi.org/10.1016/j.catena.2016.06.031

Park, N. W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based land slide susceptibility analysis. Environmental Earth Sciences, 62(2), 367–376. https://doi.org/10.1007/s12665-010-0531-5 DOI: https://doi.org/10.1007/s12665-010-0531-5

Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. https://doi.org/10.1016/j.cageo.2012.08.023 DOI: https://doi.org/10.1016/j.cageo.2012.08.023

Pourghasemi, H. R., Yousefi, S., Kornejady, A. & Cerda, A. (2017). Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems. Science of the Total Environment, 609, 764–775. https://doi.org/10.1016/j.scitotenv.2017.07.198 DOI: https://doi.org/10.1016/j.scitotenv.2017.07.198

Pourghasemi, H. R., Sadhasivam, N., Kariminejad, N., & Collins, A. L. (2020). Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process. Geoscience Frontiers, 11, 2207-2219. https://doi.org/10.1016/j.gsf.2020.03.005 DOI: https://doi.org/10.1016/j.gsf.2020.03.005

Poesen, J., Vandekerckhove, L., Nachtergaele, J., Oostwoud Wijdenes, D., Verstraeten, G. & van Wesemael, B. (2002). Gully erosion in dryland environments. In: Bull, L. J., Kirkby, M. J. (Eds.). Dryland Rivers. Hydrology and Geomorphology of Semi-Arid Channels. Wiley, Chichester, pp, 229–262.

Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R. & Feizizadeh, B. (2017). Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118–137. https://doi.org/10.1016/j.geomorph.2017.09.006 DOI: https://doi.org/10.1016/j.geomorph.2017.09.006

Razavi-Termeh, S. V., Sadeghi-Niaraki, A. & Choi, S. M. (2020). Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk, 11, 821–845. https://doi.org/10.1080/19475705.2020.1753824 DOI: https://doi.org/10.1080/19475705.2020.1753824

Raduła, M. W., Szymura, T. H. & Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological Indicators, 85, 172-179. https://doi.org/10.1016/j.ecolind.2017.10.011 DOI: https://doi.org/10.1016/j.ecolind.2017.10.011

Su, Z. A., Zhang, J. H. & Nie, X. J. (2010). Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan basin, China. Pedosphere, 20 (6), 736–746. https://doi.org/10.1016/S1002-0160(10)60064-1 DOI: https://doi.org/10.1016/S1002-0160(10)60064-1

Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press, Princeton. DOI: https://doi.org/10.1515/9780691214696

Saha, S., Roy, J., Arabameri, A., Blaschke, T., & Tien Bui, D. (2020). Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India. Sensors, 20(5), 1-25. https://doi.org/10.3390/s20051313 DOI: https://doi.org/10.3390/s20051313

Xiao, H., Li, Z., Dong, Y., Chang, X., Deng, L., Huang, J., & Liu, Q. (2017). Changes in microbial communities and respiration following the revegetation of eroded soil. Agriculture, Ecosystems & Environment, 246, 30–37. https://doi.org/10.1016/j.agee.2017.05.026 DOI: https://doi.org/10.1016/j.agee.2017.05.026

Yesilnacar, E. K. (2005). The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey (Ph.D Thesis). Department of Geomatics, University of Melbourne, pp. 423.

Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment, 557, 838–850. https://doi.org/10.1016/j.scitotenv DOI: https://doi.org/10.1016/j.scitotenv.2016.03.085

Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A. K., Pourghasemi, H. R., Zakeri, M. A. & Sadighi, F. (2018). Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena, 161, 1–13. https://doi.org/10.1016/j.catena.2017.10.010 DOI: https://doi.org/10.1016/j.catena.2017.10.010

How to Cite

APA

Valipour, M., Mohseni, N. and Hosseinzadeh, S. R. . (2022). Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models. Earth Sciences Research Journal, 25(4), 423–432. https://doi.org/10.15446/esrj.v25n4.95748

ACM

[1]
Valipour, M., Mohseni, N. and Hosseinzadeh, S.R. 2022. Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models. Earth Sciences Research Journal. 25, 4 (Feb. 2022), 423–432. DOI:https://doi.org/10.15446/esrj.v25n4.95748.

ACS

(1)
Valipour, M.; Mohseni, N.; Hosseinzadeh, S. R. . Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models. Earth sci. res. j. 2022, 25, 423-432.

ABNT

VALIPOUR, M.; MOHSENI, N.; HOSSEINZADEH, S. R. . Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models. Earth Sciences Research Journal, [S. l.], v. 25, n. 4, p. 423–432, 2022. DOI: 10.15446/esrj.v25n4.95748. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/95748. Acesso em: 16 jan. 2025.

Chicago

Valipour, Mahdieh, Neda Mohseni, and Seyed Reza Hosseinzadeh. 2022. “Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models”. Earth Sciences Research Journal 25 (4):423-32. https://doi.org/10.15446/esrj.v25n4.95748.

Harvard

Valipour, M., Mohseni, N. and Hosseinzadeh, S. R. . (2022) “Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models”, Earth Sciences Research Journal, 25(4), pp. 423–432. doi: 10.15446/esrj.v25n4.95748.

IEEE

[1]
M. Valipour, N. Mohseni, and S. R. . Hosseinzadeh, “Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models”, Earth sci. res. j., vol. 25, no. 4, pp. 423–432, Feb. 2022.

MLA

Valipour, M., N. Mohseni, and S. R. . Hosseinzadeh. “Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models”. Earth Sciences Research Journal, vol. 25, no. 4, Feb. 2022, pp. 423-32, doi:10.15446/esrj.v25n4.95748.

Turabian

Valipour, Mahdieh, Neda Mohseni, and Seyed Reza Hosseinzadeh. “Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models”. Earth Sciences Research Journal 25, no. 4 (February 7, 2022): 423–432. Accessed January 16, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/95748.

Vancouver

1.
Valipour M, Mohseni N, Hosseinzadeh SR. Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models. Earth sci. res. j. [Internet]. 2022 Feb. 7 [cited 2025 Jan. 16];25(4):423-32. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/95748

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Muhammad Ramdhan Olii, Abdul Kadir Zailani Olii, Aleks Olii, Ririn Pakaya, Bambang Agus Kironoto. (2024). Spatial modeling of soil erosion risk: a multi-criteria decision-making (MCDM) approach in the paguyaman watershed, gorontalo, Indonesia. Arabian Journal of Geosciences, 17(7) https://doi.org/10.1007/s12517-024-12032-0.

2. Bruno Martins, Catarina Pinheiro, Adélia Nunes, António Bento-Gonçalves, Carlos Hermenegildo. (2024). Geo-environmental factors controlling gully distribution at the local scale in a Mediterranean environment. CATENA, 236, p.107712. https://doi.org/10.1016/j.catena.2023.107712.

3. Saheed Adekunle Raji, Akinlabi O. Akintuyi, Emmanuel O. Wunude, Busayo Fashoto. (2023). A machine learning-based spatial statistical method for modelling different phases of gully development in South-Eastern Nigeria. Ecological Informatics, 75, p.102101. https://doi.org/10.1016/j.ecoinf.2023.102101.

4. Muhammad Ramdhan Olii, Aleks Olii, Ririn Pakaya, Muhammad Yasin Umsini Putra Olii. (2023). GIS-based analytic hierarchy process (AHP) for soil erosion-prone areas mapping in the Bone Watershed, Gorontalo, Indonesia. Environmental Earth Sciences, 82(9) https://doi.org/10.1007/s12665-023-10913-3.

Dimensions

PlumX

Article abstract page views

256

Downloads

Download data is not yet available.