Published
Electrical and magnetic data time series’ observations as an approach to identify the seismic activity of non-anthropic origin
Observaciones de series de tiempo de datos eléctricos y magnéticos como una aproximación para identificar actividad sísmica de origen no antrópico
DOI:
https://doi.org/10.15446/esrj.v25n3.95782Keywords:
Earthquake, Precursor, Electromagnetic signal, SES, Colombia (en)Sismo; Precursor; Señal electromagnética; SES; Colombia; (es)
Downloads
In this work, the authors tried to identify a possible relationship between electromagnetic signals (EM) and seismic events in the lithospheric system in the central region of Colombia. The data, both seismic records and electromagnetic signals, were taken from the catalog of the Seismological Network of the National University of Colombia (RSUNAL) and the catalog of the National Seismological Network of Colombia (RSNC). The project included the design and instrument testing phases for recording seismic signals, electrical potential variations, and magnetic field variations to try to identify possible relationships between these signals. Possible electromagnetic precursors for seismic events were observed, mainly magnetic disturbances, but it was not possible to locate evident electrical anomalies (Seismic Electric Signals - SES). Thus, although the results are not conclusive, the magnetic disturbances identified deserve further long-term analysis.
En este trabajo, los autores buscaron identificar la existencia de una posible relación entre señales electromagnéticas (EM) y eventos sísmicos que ocurren en el sistema litosférico en la región central de Colombia. Los datos, tanto de registros sísmicos como de señales electromagnéticas, fueron tomados del catálogo de la Red Sismológica de la Universidad Nacional de Colombia (RSUNAL) y del catálogo de la Red Sismológica Nacional de Colombia (RSNC). El proyecto contempló las fases de diseño y prueba de instrumentos para el registro de señales sísmicas, variaciones del potencial eléctrico y variaciones del campo magnético, para luego tratar de identificar posibles relaciones entre estas señales. Se observaron posibles precursores electromagnéticos de eventos sísmicos, principalmente perturbaciones magnéticas, pero no fue posible identificar anomalías eléctricas claras (Señales Eléctricas Sísmicas - SES). Por lo tanto, aunque los resultados no son concluyentes, las perturbaciones magnéticas identificadas merecen un análisis adicional a largo plazo.
References
Ahern, T. K., Casey, R., Barnes, D., Benson, R., & Knight, T. (2014). Seed Reference Manual. International Database Systems. Philadelphia. Pa. 224.
Ballato, A. (1995). Piezoelectricity: Old Effect. New Thrusts. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42(5). 916–926. https://doi.org/10.1109/58.464826
Bartington Instruments (2021). Mag648 & Mag649 Low Power Three-Axis Magnetic Field Sensors. https://www.bartington.com/wp-content/uploads/pdfs/datasheets/Mag648_649_DS2298.pdf
Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3–4), 371–396. https://doi.org/10.1016/j.tecto.2009.06.008
Chicangana, G., & Vargas, C. A. (2008). Seismotectonic analysis of the Bucaramanga Seismic Nest, Colombia. 7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Nice, France.
Clavijo Ramírez, J. E. & Sánchez, J. J. (2016). Fenómenos electromagnéticos asociados con terremotos. Universidad Nacional de Colombia.
CME (2021). Broadband Seismometer Model CME-4111. http://r-sensors.ru/en/products/digital_seismometers_eng/cme-4211nd-eng/
Dahlgren, R. P., Johnston, M. J. S., Vanderbilt, V. C. & Nakaba, R. N. (2014). Comparison of the stress-stimulated current of dry and fluid-saturated gabbro samples. Bulletin of the Seismological Society of America, 104(6), 2662–2672. https://doi.org/10.1785/0120140144
Freund, F. (2011). Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41(4–5), 383–400. https://doi.org/10.1016/j.jseaes.2010.03.009
Garmin International Inc. (2011). GPS 18x technical specifications.
Gomez Alba, S., & Vargas, C. A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 220(1), 335-344. https://doi.org/10.1093/gji/ggz433
Hattori, K., Han. P. & Huang, Q. (2013). Global variation of ULF geomagnetic fields and detection of anomalous changes at a certain observatory using reference data (English Translation of Denki Gakkai Ronbunshi). Electrical Engineering in Japan, 182(3), 9–18. https://doi.org/10.1002/eej.22299
Hattori, K., Han, P., Yoshino, C., Febriani, F., Yamaguchi, H. & Chen, C. H. (2013). Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000–2010: Case Studies and Statistical Studies. Surveys in Geophysics, 34(3), 293–316. https://doi.org/10.1007/s10712-012-9215-x
Helman, D. S. (2020). Seismic electric signals (SES) and earthquakes: A review of an updated VAN method and competing hypotheses for SES generation and earthquake triggering. Physics of the Earth and Planetary Interiors, 302, 106484. https://doi.org/10.1016/j.pepi.2020.106484
Huang, Q. (2005). Controlled analogue experiments on propagation of seismic electromagnetic signals. Chinese Science Bulletin, 50(17), 1956. https://doi.org/10.1360/982004-312
Hunt, A., Gershenzon. N. & Bambakidis, G. (2007). Pre-seismic electromagnetic phenomena in the framework of percolation and fractal theories. Tectonophysics, 431(1–4), 23–32. https://doi.org/10.1016/j.tecto.2006.05.028
Johnston, M. J. S. (1997). Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys in Geophysics, 18(5), 441–476. DOI:10.1023/A:1006500408086
Lighthill, S. J. (1996). A Critical Review of Van. Earthquake Prediction from Seismic Electrical Signals. World Scientific, London. https://doi.org/10.1142/3006
Liu, D., Li, H., Lee, T. Q., Sun, Z., Liu, J., Han, L., & Chevalier, M. L. (2016). Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (Mw 7.9, 2008) and its implication for earthquake slip processes. Journal of Asian Earth Sciences, 115, 468–479. https://doi.org/10.1016/j.jseaes.2015.10.019
Makarets, M. V., Koshevaya, S. V. & Gernets, A. A. (2002). Electromagnetic Emission Caused by the Fracturing of Piezoelectrics in Rocks. Physica Scripta, 65(3), 268–272. https://doi.org/10.1238/Physica.Regular.065a00268
Muñoz-Burbano, F. J., Vargas-Jiménez, C. A. & Chicangana, G. (2015). Seismicity in colombian llanos foothills: Characterization, relocation and local seismic tomography Sismicidad en el piedemonte llanero colombiano: Caracterización, relocalización y tomografía sísmica local. Boletín de Ciencias de la tierra, 38, 14-24. https://doi.org/10.15446/rbct.n38.45681
National Oceanic and Atmospheric Administration, N. (2021). Planetary K-index. https://www.swpc.noaa.gov/products/planetary-k-index
Park, S. K. (1996). Precursors to earthquakes: Seismoelectromagnetic signals. Surveys in Geophysics, 17(4), 493–516. https://doi.org/10.1007/BF01901642
Petraki, E., Nikolopoulos, D., Nomicos, C. D., Stonham, J., Cantzos, D., Yannakopoulos, P. & Kottou, S. (2015). Electromagnetic Pre-Earthquake Precursors: Mechanisms. Data and Models-A Review. Journal of Earth Science & Climatic Change, 06(01). https://doi.org/10.4172/2157-7617.1000250
Rastogi, R. G. (1997). Midday reversal of equatorial ionospheric electric field. Annales Geophysicae, European Geosciences Union, 15(10), 1309-1315
Reyes García, D. R. (2019). Estimacion de la profundidad hipocentral mediante el uso de fases síismicas de profundidad con aplicacion al terremoto de Mutata, Colombia. Universidad de los Andes, Bogotá. https://repositorio.uniandes.edu.co/bitstream/handle/1992/44870/u831132.pdf
RSUNAL (2021). ¿Qué es la RSUNAL? http://redsismologica.unal.edu.co/que-es-la-rsunal/
Sarlis, N. V., Skordas, E. S. & Varotsos, P. A. (2021). Geoelectric Field and Seismicity Changes Preceding the 2018 Mw6.8 Earthquake and the Subsequent Activity in Greece. Cornell University.
Sarlis, N. V., Skordas, E. S., Varotsos, P. A., Nagao. T., Kamogawa, M. & Uyeda, S. (2015). Spatiotemporal variations of seismicity before major earthquakes in the Japanese area and their relation with the epicentral locations. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 986-989. https://doi.org/10.1073/pnas.1422893112
Scoville, J., Heraud, J. & Freund, F. (2015). Pre-earthquake magnetic pulses. Natural Hazards and Earth System Sciences, 15(8), 1873-1880. https://doi.org/10.5194/nhess-15-1873-2015
SGC (Servicio Geológico Colombiano). (2016). El sismo de Colombia, Huila del 30 de octubre de 2016 aspectos sismológicos y evaluación de efectos. https://www2.sgc.gov.co/Publicaciones/Sismos%20importantes/Informe%20Sismo%20Colombia%20Huila%2030%20de%20Octubre%20de%202016.pdf
SGC. (2010). Neotectónica del Piedemonte Llanero entre los municipios de Tauramena, Monterrey y Villanueva (Casanare).
Singh, D., Singh, B. & Pundhir, D. (2018). Ionospheric perturbations due to earthquakes as determined from VLF and GPS-TEC data analysis at Agra, India. Advances in Space Research, 61(7), 1952–1965. https://doi.org/10.1016/j.asr.2017.11.017
Solano Fino, J. M. (2017). Correlación entre señales EM y eventos sismológicos de la Sabana de Bogotá y alrededores para establecer la existencia de precursores sísmicos. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/62292
Sorokin, V. M., Chmyrev, V. M. & Yaschenko, A. K. (2005). Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. Journal of Atmospheric and Solar-Terrestrial Physics, 67(14), 1259-1268. https://doi.org/10.1016/j.jastp.2005.07.013
Stacey, F. D. (1964). The seismomagnetic effect. Pure and Applied Geophysics, 58(1), 5–22. https://doi.org/10.1007/BF00879136
Swati, Singh, B., Pundhir, D., Sinha, A. K., Rao, K. M., Guha, A. & Hobara, Y. (2020). Ultra-low frequency (ULF) magnetic field emissions associated with some major earthquakes occurred in Indian Subcontinent. Journal of Atmospheric and Solar-Terrestrial Physics, 211, 105469. https://doi.org/10.1016/j.jastp.2020.105469
Takahashi, I., Hattori, K., Harada, M., Yoshino, C. & Isezaki, N. (2007). Anomalous geoelectrical and geomagnetic signals observed at Southern Boso Peninsula, Japan. Annals of Geophysics, 50(1), 123–135. https://doi.org/10.4401/ag-3092
Tiampo, K. F. & Shcherbakov, R. (2012). Seismicity-based earthquake forecasting techniques: Ten years of progress. Tectonophysics, 522–523, 89–121. https://doi.org/10.1016/j.tecto.2011.08.019
Tinker-Rasor (2021). Direct Burial - Tinker & Rasor. https://www.tinker-rasor.com/direct-burial
UAN (2021). Universidad Antonio Nariño - Sedes. https://www.uan.edu.co/sedes
Uyeda, S., Al-Damegh, K. S., Dologlou, E. & Nagao, T. (1999). Some relationship between VAN seismic electric signals (SES) and earthquake parameters. Tectonophysics, 304(1–2), 41-55. https://doi.org/10.1016/S0040-1951(98)00301-1
Vargas, C. A., Gomez, J. S., Gomez, J. J., Solano, J. M. & Caneva, A. (2021). Comment on seismic electric signals (SES) and earthquakes: A review of an updated VAN method and competing hypotheses for SES generation and earthquake triggering by Daniel S. Helman. Physics of earth and planetary interiors, 302. Physics of the Earth and Planetary Interiors, 313, 106676, https://doi.org/10.1016/j.pepi.2021.106676.
Varotsos, P. A. (1984). Physical properties of the variations of the electric field of the Earth preceding earthquakes, Tectonophysics, 110, 73–98.
Varotsos, P. A., Alexopoulos, K. & Lazaridou, M. (1993). Latest aspects of earthquake prediction in Greece based on seismic electric signals. II. Tectonophysics, 224(1–3), 1–37. https://doi.org/10.1016/0040-1951(93)90055-O
Varotsos, P. A., Sarlis, N., Skordas, E. & Lazaridou, M. (2006a). Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism. Tectonophysics, 412(3-4), 279-288. https://doi.org/10.1016/j.tecto.2005.10.037
Varotsos, P. A., Sarlis, N. V., Skordas, E. S. & Lazaridou, M. S. (2013). Seismic electric signals: An additional fact showing their physical interconnection with seismicity. Tectonophysics, 589, 116–125. https://doi.org/10.1016/j.tecto.2012.12.020
Varotsos, P. A., Sarlis, N. V, & Skordas, E. S. (2006b). On the recent advances in the study of seismic electric signals (VAN method). Physics and Chemistry of the Earth, 31(4-9), 189-197. https://doi.org/10.1016/j.pce.2006.02.008
Varotsos, P. A., Sarlis, N. V. & Skordas, E. S. (2019). Phenomena preceding major earthquakes interconnected through a physical model. Annales Geophysicae, 37(3), 315–324. https://doi.org/10.5194/angeo-37-315-2019
Varotsos, P. A., Sarlis, N. V. & Skordas, E. S. (2011). Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time Series. Springer Praxis Books, Geophysical Sciences. https://doi.org/10.1007/978-3-642-16449-1
Yang, T., Mishima, T., Ujiie, K., Chester, F. M., Mori, J. J., Eguchi, N., & Toczko, S. (2013). Strain decoupling across the décollement in the region of large slip during the 2011 Tohoku-Oki earthquake from anisotropy of magnetic susceptibility. Earth and Planetary Science Letters, 381, 31–38. https://doi.org/10.1016/j.epsl.2013.08.045
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Carlos A. Vargas, J. Sebastian Gomez, Juan J. Gomez, Juan M. Solano, Alexander Caneva. (2023). Space–Time Variations of the Apparent Resistivity Associated with Seismic Activity by Using 1D-Magnetotelluric (MT) Data in the Central Part of Colombia (South America). Applied Sciences, 13(3), p.1737. https://doi.org/10.3390/app13031737.
2. Carlos A. Vargas, Alexander Caneva, Juan M. Solano, Adriana M. Gulisano, Jaime Villalobos. (2023). Evidencing Fluid Migration of the Crust during the Seismic Swarm by Using 1D Magnetotelluric Monitoring. Applied Sciences, 13(4), p.2683. https://doi.org/10.3390/app13042683.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.