Published

2022-09-08

Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes

Consideraciones petrogenéticas de las rocas ígneas de la Formación La Quinta en la serranía del Perijá, porción norte de Los Andes colombianos

DOI:

https://doi.org/10.15446/esrj.v26n2.95993

Keywords:

La Quinta Formation; Triassic-Jurassic volcanic rocks; supra-subduction arc; whole-rock geochemistry; geothermometry (en)
Rocas ígneas triásicas-jurásicas; magmatismo híbrido de arco-rift; rompimiento de Pangea; petrogénesis; depósitos de cobre estrato- ligados. (es)

Downloads

Authors

  • Néstor Alfredo Cano Universidad Nacional de Colombia
  • Juan Carlos Molano Universidad Nacional de Colombia
  • Janeth Sepúlveda Servicio Geológico Colombiano, Bogotá, Colombia

La Quinta Formation is a Triassic-Jurassic volcano-sedimentary unit that crops out along both flanks of the Serranía de Perijá, in Cesar and La Guajira departments of Colombia, and Zulia state in Venezuela. It is mainly composed of red clastic sedimentary rocks (siltstones, sandstones, and minor conglomerates), interbedded with volcanic rocks and cut by small stocks. The volcanic horizons are mainly formed by rhyolitic tuffs and lava flows (basalts and andesites).

 

Andesites and basalts are constituted by plagioclase, clinopyroxene, biotite, magnetite, apatite, and zircon, whereas rhyolites and tuffs are formed by plagioclase, ß quartz, biotite, and sanidine. EMPA analyses revealed that plagioclase display varying compositions from labradorite-andesine in intermediate and basic rocks to oligoclase in rhyolites. Besides, clinopyroxene from basalts was classified as augite, and several hydrothermal mineral phases were also recognized, such as epidote, Ca-zeolites, and andradite-grossular. Using ILMAT (ilmenite-magnetite) geothermometer, temperature and oxygen fugacity conditions of 700-730°C and +1.2 ∆NNO were determined for dolerite.

 

Whole-rock geochemistry results evidence that La Quinta Formation volcanic rocks belong to the sub-alkaline (calc-alkaline) series, displaying compositions from basaltic andesites to rhyolites. Chondrite normalized REE and incompatible elements spidergrams show typical features of subduction-related magmatism and depict three groups of rocks (basic, intermediate, and acid) with contrasting geochemical behaviors. Hence, each group could have formed during single magmatic events associated with different magmatic suites. Nevertheless, the three groups have features that suggest a genesis related to an Andean-type supra-subduction zone, which agrees with the regional tectonic assemblage during Triassic-Jurassic times.

La Formación La Quinta es una unidad volcano-sedimentaria del Triásico-Jurásico que aflora en ambos flancos de la serranía del Perijá y en la parte occidental de Los Andes de Mérida, en Colombia y Venezuela. Está conformada por capas de lodolita y arenisca rojiza intercaladas con lavas basálticas a riolíticas e ignimbritas. Esta sucesión está local- mente intruida por cuerpos hipoabisales riolíticos-dacíticos, diques félsicos y stocks monzodioríticos. El volcanismo registrado en la Formación La Quinta abarca un rango composicional amplio en la serie subalcalina que incluye: basalto alcalino-andesita basáltica (plagioclasa+augita), andesita-traquiandesita-dacita (plagioclasa+augita+cuarzo+anfíbol) y riolita-riolita alcalina (cuarzo+sanidina+plagioclasa+biotita). Los minerales accesorios son magnetita, ilmenita, hema- tita, circón y apatito, lo que sugiere condiciones oxidantes en los magmas (desde +1.2 Ni-NiO hasta el campo de hema- tita-magnetita). Análisis de geotermobarometría en clinopiroxeno (~1120 °C y 4.6 kbar) indican que su cristalización ocurrió en la porción media de una corteza continental normal a engrosada (26-49 km), y precedió al fraccionamiento de ilmenita-magnetita (~720 °C). Adicionalmente, las rocas exhiben alteración de calcisilicatos (grosularia-andradita hidratada, epidota y ceolitas), en asociación con posibles depósitos cupríferos estrato-ligados. Las evidencias mine- ralógicas y geoquímicas halladas sugieren que estas rocas pertenecen a una suite comagmática donde los procesos de diferenciación estuvieron gobernados por la cristalización fraccionada a baja presión y la asimilación parcial de la corteza media. Asimismo, estas rocas se formaron a partir de grados de fusión parcial bajos en una lherzolita de espinela (o una fuente enriquecida) dentro de un ajuste tectónico suprasubducción de naturaleza híbrida entre un arco y un rift. De tal modo, en este artículo se propone un escenario tectónico mixto en el cual la placa Farallón subducía bajo la placa Suramericana al mismo tiempo que se generaban cuencas transtensionales ligadas al rompimiento de Pangea. De allí la existencia de la actividad volcánica con firma de arco en La Quinta, que estaba ubicada detrás del arco principal.

References

ALS-Chemex (2022). Geochemistry, schedule of services & fees.

Bacon, C. R. & Hirschmann, M. M. (1988). Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. American Mineralogist, 73, 57-61.

Barrett, P. M., Butler, R. J., Novas, F. E., Moore-Fay, S. C., Moody, J. M., Clark, J. M. & Sánchez-Villagra, M. R. (2008). Dinosaur remains from the La Quinta Formation (Lower or Middle Jurassic) of the Venezuelan Andes. Palaontologische Zeitschrift, 82, 163-177. https://doi.org/10.1007/BF02988407

Bartok, P., Mejía-Hernández, M. C. & Moyano, I. (2015). Paleogeographic constraints on middle-to late-Jurassic tectonic reconstruction of the Maya block of southern Mexico and equivalent strata of northwestern South America. AAPG Memoir, 108, 201-216. https://doi.org/10.1306/13531937M1082953

Bayona, G., Bustamante, C., Nova, G. & Salazar, A. M. (2020). Jurassic Evolution of the Northwestern Corner of Gondwana: Present Knowledge and Future Challenges in Studying Colombian Jurassic Rocks. In: Gómez, J. & Pinilla-Pachón, A. O. (Eds.). The Geology of Colombia, 2 (Mesozoic). Servicio Geológico Colombiano, Publicaciones Especiales 36, 171-207. https://doi.org/10.32685/pub.esp.36.2019.05

Box, S. E. & Flower, M. F. J. (1989). Introduction to Special Section on Alkaline Arc Magmatism: Journal of Geophysical Research. Solid Earth, 94, 4467–4468. https://doi.org/10.1029/JB094iB04p04467

Boynton, W. V. (1983). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Editor). Rare earth element geochemistry. Elsevier Science Publisher, Amsterdam, The Netherlands, 63-114 p. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V. A., Gehrels, G. E. & Vervoort, J. (2010). Geocronología U–Pb LA–ICP–MS y correlación regional de las rocas intrusivas del Jurásico Medio del Macizo de Garzón, Valle Superior del Magdalena y la cordillera Central, sur de Colombia. Boletín de Geología, 32, 93-109.

Carmichael, I. (1967). The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contributions to Mineralogy and Petrology, 14, 36-64. https://doi.org/10.1007/BF00370985

Cediel, F. (2019). Phanerozoic orogens of northwestern South America: Cordilleran-type orogens. Taphrogenic tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá indenter. In: Cediel, F. & Shaw, R. P. (Editors). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction: Springer Nature Switzerland, 3-95. https://doi.org/10.1007/978-3-319-76132-9_1

Champetier de Ribes, G., Pagnacco, P., Radelli, L. & Weecksteen, G. (1961). Geología y mineralizaciones cupríferas de la Serranía de Perijá, entre Becerril y Villanueva (Departamento del Magdalena, Intendencia de La Guajira). Servicio Geológico Colombiano historical archive, report No. 1431.

Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. (2015). Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43, 919-922. https://doi.org/10.1130/G36996.1

Chavarría, L., Bustamante, C., Cardona, A., & Bayona, G. (2021). Quantifying crustal thickness and magmatic temperatures of the Jurassic to Early Cretaceous North-Andean arc. International Geology Review, 1-21. https://doi.org/10.1080/00206814.2021.1992301

Chiaradia, M. (2015). Crustal thickness control on Sr/Y signatures of recent arc magmas: An Earth scale perspective. Scientific Reports, 5(8115), 1-5. https://doi.org/10.1038/srep08115

Class, C., Miller, D., Goldstein, S. & Langmuir, C. (2000). Distinguishing melt and fluid subduction components in the Umnak volcanic, Aleutian arc. Geochemistry Geophysics Geosystems G3, v. 1. https://doi.org/10.1029/1999GC000010

Colmenares, F., Mesa, A. M., Roncancio, J., Arciniegas, E., Pedraza, P., Cardona, A., Romero, A. J., Silva, C. A., Alvarado, S., Romero, O. A. & Vargas, A. F. (2007). Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26,27, 33, 34 y 40. Proyecto: “Evolución geohistórica de la Sierra Nevada de Santa Marta”: Ingeominas-Invemar-Ecopetrol-ICP-Geosearch Ltda. Servicio Geológico Colombiano.

Correa-Martínez, A. M., Rodríguez-García, G., Isabel Arango, M. & Zapata, G. (2019). Petrografía, geoquímica y geocronología U-Pb de las rocas volcánicas y piroclásticas de la Formación Noreán al NW del Macizo de Santander, Colombia. Boletín de Geología, 41, 29-54. https://doi.org/10.18273/revbol.v41n1-2019002

Corriveau, L. (2007). Iron oxide copper-gold deposits: A Canadian perspective: Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 307-328.

Defant, M. J., & Drummondt, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665. https://doi.org/10.1038/347662a0

Forero, A. (1972). Estratigrafía del Precretácico en el flanco occidental de la Serranía de Perijá. Geología Colombiana, 7, 7-78.

Frost, B. R. & Frost, C. D. (2014). Essentials of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge, UK, 303 pp. https://doi.org/10.1017/9781108685047

Gill, R. (2010). Igneous Rocks and Processes. Wiley-Blackwell, Oxford, UK, 472 pp.

Gómez, L., Buchely, F., Lancheros, J., Dávila, C., López, C., Romero, O. & González, F. (2010). Cartografía geológica y muestreo geoquímico de la parte norte de la Serranía del Perijá planchas 21, 22, 27, 28, 34 y 35. Servicio Geológico Colombiano. https://doi.org/0.32685/10.143.2009.243

González-Duran, A., Cano, N., Molano, J. C., Guerrero, N., Sepúlveda, J., Prieto, D. & Tassinari, C. C. G. (2017). Características geoquímicas de las mineralizaciones de cobre hospedadas en la Formación La Quinta. XVI Colombian Geological Congress, Santa Marta, Colombia, 1706-1709.

González-Iregui, H., Salinas-Echeverri, R., Cárdenas, J., Muñoz, C. & Vélez-Giraldo, W., (2015). Geología de la plancha 41 - Becerril, escala 1:100.000, Memoria Explicativa. Servicio Geológico Colombiano.

GRP Ltda. (2010). Geología de las planchas 27-Valledupar y 28-Villanueva, escala 1:100.000. Servicio Geológico Colombiano.

Hastie, A. R., Kerr, A. C., Pearce, J. A. & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48, 2341-2357. https://doi.org/10.1093/petrology/egm062

Hitzman, M., Kirkham, R., Broughton, D., Thorson, J., & Selley, D. (2005). The sediment-hosted stratiform copper ore system. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., & Richards, J. P. (Eds.). Society of Economic Geologists, One Hundredth Anniversary Volume, 609-642. https://doi.org/10.5382/AV100.19

Hollocher, K., Robinson, P., Walsh, E., & Roberts, D. (2012). Geochemistry of amphibolite-facies volcanics and gabbros of the Støren nappe in extensions west and southwest of Trondheim, western gneiss region, Norway: a key to correlations and paleotectonic settings. American Journal of Science, 312, 357-416. https://doi.org/10.2475/04.2012.01

Invemar, Ingeominas, Ecopetrol, ICP, and Geosearch (2007). Geología de la Plancha 27-Agustín Codazzi, escala 1:100.000. Servicio Geológico Colombiano.

Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293-305. https://doi.org/10.11456/shigenchishitsu1951.27.293

Jiménez, C. A. (2010). Vulcanismo y mineralizaciones cupríferas en la Serranía del Perijá. B.Sc. Thesis, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia.

Kay, R. W. (1978). Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4, 117-132. https://doi.org/10.1016/0377-0273(78)90032-X

Kay, R. W. & Kay, S. M. (2002). Andean Adakites: Three ways to make them. Acta Petrologica Sinica, 18, 303-311.

Kellogg, J. N. (1984). Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geological Society of America, Memoir, 162, 239-261. https://doi.org/10.1130/MEM162-p239

Klein, D. P. & Johnson, G. R. (1983). Density, Porosity, and Magnetic Properties of Rock Specimens from Southwestern Arizona. United States Geological Survey, open-fil report, 83-808. https://doi.org/10.3133/ofr83808

Langer, M. C., Rincón, A. D., Ramezani, J., Solórzano, A. & Rauhut, O. W. M. (2014). New dinosaur (Theropoda, stem-Averostra) from the earliest Jurassic of the La Quinta formation, Venezuelan Andes. Royal Society Open Science, 1(140184). https://doi.org/10.1098/rsos.140184

Large, R. R., Gemmell, J. B. & Paulick, H. (2001). The alternation box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96, 957-971. http://dx.doi.org/10.2113/96.5.957

Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectono- magmatic approach. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain.

Leal-Mejía, H., Shaw, R. P. & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In: Cediel, F. & Shaw, R. P. (Editors). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction: Springer Nature Switzerland, p. 253–410. https://doi.org/10.1007/978-3-319-76132-9_5

van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M. & Mora, A. (2016a). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31, 271-294. https://doi.org/10.1016/j.gr.2015.01.011

van der Lelij, R., Spikings, R., and Mora, A. (2016b). Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos, 248-251, 220-239. https://doi.org/10.1016/j.lithos.2016.01.006

van der Lelij, R., Spikings, R., Gerdes, A., Chiaradia, M., Vennemann, T. & Mora, A. (2019). Multi-proxy isotopic tracing of magmatic sources and crustal recycling in the Palaeozoic to Early Jurassic active margin of North-Western Gondwana. Gondwana Research, 66, 227-245. https://doi.org/10.1016/j.gr.2018.09.007

LeMaitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid, R., Sorensen, H. & Woolley, A. R. (2002). Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, UK, 253 pp. https://doi.org/10.1017/CBO9780511535581

Lepage, L. D. (2003). ILMAT: An Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers and Geosciences, 29, 673-678. https://doi.org/10.1016/S0098-3004(03)00042-6

López-Isaza, J. A. & Zuluaga, C. A. (2020). Late Triassic to Jurassic Magmatism in Colombia: Implications for the Evolution of the Northern Margin of South America: Geology of Colombia, 2, 77-116. https://doi.org/10.32685/pub.esp.36.2019.03

López–Isaza, J.A. & Zuluaga, C.A. (2020). Late Triassic to Jurassic magmatism in Colombia: Implications for the evolution of the northern margin of South America. In: Gómez, J. & Pinilla–Pachon, A. O. (Editors). The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 77–116. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.03

Loucks, R. R. (2014). Distinctive composition of copper-ore-forming arc magmas. Australian Journal of Earth Sciences, 61, 5-16. https://doi.org/10.1080/08120099.2013.865676

Maniar, P. D. & Piccoli, P. M. (1989). Geological Society of America Bulletin Tectonic discrimination of granitoids Subscribe Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

Martin, H. (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753-756. https://doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

Martini, M. & Ortega-Gutiérrez, F. (2018). Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: A review. Earth-Science Reviews, 183, 38-55. https://doi.org/10.1016/j.earscirev.2016.06.013

Maze, W. B. (1984). Jurassic La Quinta Formation in the Sierra de Perijá, northwestern Venezuela: Geology and tectonics environment of the red beds and volcanic rocks. Geological Society of America Memoir, 162, 263-282. https://doi.org/10.1130/MEM162-p263

Meinert, L. D., Dipple, G. M. & Nicolescu, S. (2005). World skarn deposits. Society of Economic Geologists, One Hundredth Anniversary Volume, 299-336. https://doi.org/10.5382/AV100.11

Middlemost, E. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

Mojica, J. & Kammer, A. (1995). Eventos Jurasicos en Colombia. Geología Colombiana, 19, 165-172.

Montaño, P. (2009). Caracterización petrográfica y geocronología detrítica de las rocas aflorantes en el arroyo Alberto (Serranía del Perijá), infrayacentes a la Formación Río Negro. B.Sc. Thesis, Universidad Nacional de Colombia, Bogota, Colombia, 20 pp.

Morimoto, N. (1988). Nomenclature of Pyroxenes. Mineralogy and Petrology, 39, 55-76. https://doi.org/10.1007/BF01226262

Nadoll, P., Angerer, T., Mauk, J. L., French, D. & Walshe, J. (2014). The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013

Nimis, P. (1995). A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology, 121, 115-125. https://doi.org/10.1007/s004100050093

Nova, G., Bayona, G. A., Silva-Tamayo, J. C., Cardona, A., Rapalini, A., Montaño, P. C., Eisenhauer, A., Dussan, K. T., Valencia, V. A., Ramirez, V. & Montes, C. (2019). Jurassic break-up of the Peri-Gondwanan margin in northern Colombia: Basin formation and implications for terrane transfer. Journal of South American Earth Sciences, 89, 92-117. https://doi.org/10.1016/j.jsames.2018.11.014

Ortega, C., Rojas-Martínez, E. & Manco-Jaraba, D. (2012). Mineralización de cobre en el sector de San Diego, Serranía del Perijá. Geología Colombiana, 37, 51-62.

Ostos, M., Yoris, F. & Avé-Lallemant, H. (2005). Overview of the southeast Caribbean-South American plate boundary zone. Geological Society of America Special Paper, 394, 53-89. https://doi.org/10.1130/0-8137-2394-9.53

Pagnacco, P. (1962). Cupriferous mineralizations in the Serrania de Perijá between Codazzi and Molino (Colombia). Geología Colombiana, 2, 5-13.

Pearce, J.A. (1996). A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D. A. (Ed.). Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Geological Association of Canada, Short Course Notes, Vol. 12, 79-113.

Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L. & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5, 1-7. DOI: 10.1038/srep17786

Radelli, L. (1961). Acerca de la Serranía de Perijá entre Codazzi y Villanueva. Geología Colombiana, 1, 23-41.

Ramírez, D. A., Correa-Martínez, A. M., Zapata-Villada, J. P. & Rodríguez-García, G. (2020). Tectono-magmatic implications of the Jurassic volcanic and volcanoclastic record of the Santa Marta Massif (Colombia). Journal of South American Earth Sciences, 104, 1-24. https://doi.org/10.1016/j.jsames.2020.102866

Richards, J. P. & Kerrich, R. (2007). Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, 102, 537-576. https://doi.org/10.2113/gsecongeo.102.4.537

Rodríguez-García, G. (2018). Caracterización petrográfica, química y edad Ar-Ar de cuerpos porfídicos intrusivos en la Formación Saldaña. Boletín Geológico, 44, 5-23. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.5

Rodríguez-García, G. & Obando, G. (2020). Volcanism of the La Quinta Formation in the Perijá mountain range. Boletín Geológico, 46, 51–94. https://orcid.org/0000-0003-1422-3523

Rodríguez-García, G., Arango, M. I., Zapata, G. & Bermúdez, J. G. (2016). Catálogo de unidades litoestratigráficas de Colombia - Formación Saldaña - Cordilleras Central y Oriental Tolima, Huila, Cauca y Putumayo. Catálogos estratigráficos, Servicio Geológico Colombiano.

Rodríguez-García, G., Arango, M. I., Zapata, G. & Bermúdez, J. G. (2018). Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes. Journal of South American Earth Sciences, 81, 10–30. https://doi.org/10.1016/j.jsames.2017.10.012

Rodríguez, S. E. (1986). Génesis y mineralogía de los depósitos de cobre del Táchira Nororiental, Venezuela. Geologia Colombiana, 15, 177-184.

Rudnick, R. L. & Gao, S. (2003). Composition of the continental crust. In: Hollan, H. D. & Turekian, K. K. (Eds). Treatrise on Geochemistry. Elsevier Inc., chapter 3.01, pp. 64. https://doi.org/10.1016/B0-08-043751-6/03016-4

Saez-Paz, J. (2012). Estudio al microscopio de 5 muestras del proyecto San Diego. Internal report, Carboandes, Colombia.

Safonova, I., Biske, G., Romer, R. L., Seltmann, R., Simonov, V. & Maruyama, S. (2016). Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Research, 30, 236-256. https://doi.org/10.1016/j.gr.2015.03.006

Sen, G. (2014). Petrology: Principles and practice. Springer Nature Switzerland, pp. 370. https://doi.org/10.1007/978-3-642-38800-2

Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3-41. https://doi.org/10.2113/gsecongeo.105.1.3

Spikings, R. A., Cochrane, R., Vallejo, C., Villagomez, D., Van der Lelij, R., Paul, A. & Winkler, W. (2019). Latest Triassic to Early Cretaceous tectonics of the Northern Andes: Geochronology, geochemistry, isotopic tracing, and thermochronology. In: Horton, B. K. & Folguera, A. (Editors). Andean Tectonics. Elsevier Inc., 173-208. https://doi.org/10.1016/B978-0-12-816009-1.00009-5

Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication, 42, 313-345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19

Tschanz, C., Jimeno, A. & Cruz, B. J. (1969). Geology of the Santa Marta area (Colombia). Instituto Nacional de Investigaciones Geológico-Mineras (Servicio Geológico Colombiano).

UNAL-SGC (2014). Caracterización metalogenética de zonas de interés para exploración mineral en áreas estratégicas en los Andes colombianos. Cooperation Agreement No. 014 de 2013. Servicio Geológico Colombiano.

UNAL-SGC (2020). Informe final de la zona de San Diego-Perijá. Special Cooperation Agreement No. 004 de 2019. Servicio Geológico Colombiano.

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125, 875-896. https://doi.org/10.1016/j.lithos.2011.05.003

Wang, X., Hou, T., Wang, M., Zhang, C., Zhang, Z., Pan, R., Marxer, F. & Zhang, H. (2021). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33, 621-637. https://doi.org/10.5194/ejm-33-621-2021

Whitney, D. L. & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187. https://doi.org/10.2138/am.2010.3371

Wilson, M. (1989). Igneous Petrogenesis. Springer, Dordrecht, The Netherlands, 480 pp. https://doi.org/10.1007/978-94-010-9388-0

Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson Education Limited, Harlow, UK, 738 pp.

Wokittel, R. & Restrepo-Acevedo, H. (1955). Formación cuprífera de la Serranía del Perijá (intendencia de la Guajira y departamento del Magdalena). Geología de la Sierra Nevada de Santa Marta y Serranía de Perijá. Servicio Geológico Colombiano historical archive, report No. 1193. https://doi.org/10.32685/0120-1425/bolgeol5.3.1957.331

How to Cite

APA

Cano, N. A. ., Molano, J. C. and Sepúlveda, J. (2022). Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes. Earth Sciences Research Journal, 26(2), 139–156. https://doi.org/10.15446/esrj.v26n2.95993

ACM

[1]
Cano, N.A. , Molano, J.C. and Sepúlveda, J. 2022. Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes. Earth Sciences Research Journal. 26, 2 (Sep. 2022), 139–156. DOI:https://doi.org/10.15446/esrj.v26n2.95993.

ACS

(1)
Cano, N. A. .; Molano, J. C.; Sepúlveda, J. Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes. Earth sci. res. j. 2022, 26, 139-156.

ABNT

CANO, N. A. .; MOLANO, J. C.; SEPÚLVEDA, J. Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes. Earth Sciences Research Journal, [S. l.], v. 26, n. 2, p. 139–156, 2022. DOI: 10.15446/esrj.v26n2.95993. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/95993. Acesso em: 28 mar. 2025.

Chicago

Cano, Néstor Alfredo, Juan Carlos Molano, and Janeth Sepúlveda. 2022. “Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes”. Earth Sciences Research Journal 26 (2):139-56. https://doi.org/10.15446/esrj.v26n2.95993.

Harvard

Cano, N. A. ., Molano, J. C. and Sepúlveda, J. (2022) “Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes”, Earth Sciences Research Journal, 26(2), pp. 139–156. doi: 10.15446/esrj.v26n2.95993.

IEEE

[1]
N. A. . Cano, J. C. Molano, and J. Sepúlveda, “Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes”, Earth sci. res. j., vol. 26, no. 2, pp. 139–156, Sep. 2022.

MLA

Cano, N. A. ., J. C. Molano, and J. Sepúlveda. “Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes”. Earth Sciences Research Journal, vol. 26, no. 2, Sept. 2022, pp. 139-56, doi:10.15446/esrj.v26n2.95993.

Turabian

Cano, Néstor Alfredo, Juan Carlos Molano, and Janeth Sepúlveda. “Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes”. Earth Sciences Research Journal 26, no. 2 (September 8, 2022): 139–156. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/95993.

Vancouver

1.
Cano NA, Molano JC, Sepúlveda J. Petrogenetic constraints of the La Quinta Formation igneous rocks, Serranía del Perijá, northern Colombian Andes. Earth sci. res. j. [Internet]. 2022 Sep. 8 [cited 2025 Mar. 28];26(2):139-56. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/95993

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Jose Manuel Torres-Parada, Johanset Orihuela, Carlos Mario Alarcón Gómez, Jefferson Steeven Diaz Villamizar, Juan Sebastián Gómez-Coronado, José Javier Márquez-Prada, Jorge Andrés Lizarazo-Pabón, German Patarroyo. (2025). Jurassic fern Piazopteris from the Girón Group, Colombia: A taxonomic and paleoenvironmental evaluation. Journal of South American Earth Sciences, 158, p.105488. https://doi.org/10.1016/j.jsames.2025.105488.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 9
  • Mendeley - Readers: 1
  • Mentions
  • News: 1

Article abstract page views

356

Downloads