Published
Life on Mars (LoMars): History, advances, current research, and perspectives
Vida en Marte: Historia, avances, investigación actual y perspectivas
DOI:
https://doi.org/10.15446/esrj.v26n3.96985Keywords:
Life on Mars, Water on Mars, Perseverance Rover, Mars 2020, Zhurong Rover, ALH84001 meteorite (en)Vida en Marte, agua en Marte, astromóvil Perseverance, Zhurong Rover, meteorito ALH84001 (es)
Downloads
A quest for life on Mars (LoMars) started in the early 1960s when the most prestigious scientific journals published several research articles. According to Elsevier’s Scopus database, the rise in annual literature production started in the late 1990s, most likely associated with the launch of the National Aeronautics and Space Administration’s (NASA) first rover, Sojourner, in 1996. The number of articles on Mars will likely continue to rise sharply, given that the launch and landing of the Mars 2020 Perseverance Rover are critical to discovering and understanding the present or past life on the planet. Thus far, the USA has dominated in the number of citations and collaborations related to Mars research, given its facilities equipped with relevant infrastructure and researchers’ capacity to explore the Solar System beyond Earth. Most of these frequently cited papers report observational and theoretical research results. However, a highly cited article is based on analytical studies of a unique Martian meteorite (i.e., Allan Hills 84001) found in Antarctica. It is expected that the future sample return mission associated with the Perseverance Rover caching system could increase the LoMars research exponentially in the coming decades if Martian samples are successfully brought to Earth. Based on the total number of publications on LoMars, the most influential institute, the author, and the journal are Caltech, C.P. McKay, and Icarus, respectively. Both the institute and the author are directly affiliated with NASA, indicating the leadership offered by the organization in LoMars research.
Las preguntas sobre la vida en Marte comenzaron en los años sesenta cuando varios artículos de investigación se publicaron en las revistas científicas más prestigiosas. De acuerdo con la base de datos de Elsevier, el aumento en la producción literaria sobre este tema comenzo a finales de los noventas, debido al lanzamiento del Sojourner, el primer astromóvil de la Administración Nacional de Aeronáutica y el Espacio (NASA). Es previsible que el número de artículos sobre Marte continuará creciendo debido a que el lanzamiento y amartizaje del astromóvil Perseverance en 2020 es determinante en el descubrimiento y exploración del pasado y presente de este planeta. Los Estados Unidos han dominado en número de citaciones y colaboraciones relacionadas a la investigación de Marte, dada sus instalaciones equipadas con infraestructura relevante y con investigadores capacitados para explorar el sistema solar más allá de la Tierra. La mayoría de estos artículos, frecuentemente citados, presentan el resultado de investigaciones teóricas y de observación. Sin embargo, uno de estos trabajos se basa en los estudios analíticos del único meteórito proveniente de Marte y que fue hallado en la Antártida. Se prevee que el sistema de toma de muestras del Perseverance Rover incrementará exponencialmente la investigación sobre la vida en Marte en las próximas décadas siempre y cuando estas muestras puedan traerse a la Tierra. Con base en el número total de estudios sobre la vida en Marte, el instituto Caltech, el autor C.P. McKay y la publicación Icarus son las más influyentes de la materia. Tanto el instituto como el autor están afiliados directamente con la NASA, lo que indica el liderazgo ofrecido por la organización en las investigaciones sobre la vida en Marte.
References
Ait Moulay Larbi, M., Daassou, A., Baratoux, D., Bouley, S., Benkhaldoun, Z., Lazrek, M., Garcia, R., & Colas, F. (2015). First lunar flashes observed from Morocco (ILIAD Network): Implications for lunar seismology. Earth, Moon, and Planets, 115, 1-21. https://doi.org/10.1007/s11038-015-9462-1 DOI: https://doi.org/10.1007/s11038-015-9462-1
Ali, A., Jabeen, I., Gregory, D., Verish, R., & Banerjee, N. R. (2016). New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars. Meteoritics & Planetary Sciences, 51, 981-995. https://doi.org/10.1111/maps.12640 DOI: https://doi.org/10.1111/maps.12640
Ali, A., Nasir, S., Jabeen, I., & Al Rawas, A. (2017a). Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism. Meteoritics & Planetary Sciences, 52(10), 2097-2112. https://doi.org/10.1111/maps.12910 DOI: https://doi.org/10.1111/maps.12910
Ali, A., Nasir, S., Jabeen, I., & Al Rawas, A. (2017b). Geochemical and O-isotope perspective of a new R chondrite Dhofar 1671: Affinity with ordinary chondrites. Meteoritics & Planetary Sciences, 52(9), 1991-2003. https://doi.org/10.1111/maps.12903 DOI: https://doi.org/10.1111/maps.12903
Ali, A., Nasir, S., Jabeen, I., & Al Rawas, A. (2017c). Review of the Sayh al Uhaymir (SaU) 005, plus pairings, Martian meteorite from Al Wusta, Oman. Sultan Qaboos University Journal for Science, 22(1), 29-39. https://doi.org/10.24200/squjs.vol22iss1pp29-39 DOI: https://doi.org/10.24200/squjs.vol22iss1pp29-39
Ali, A., Jabeen, I., Nasir, S., & Banerjee, N. R. (2018). Oxygen isotope thermometry of DaG 476 and SaU 008 Martian meteorites: Implications for their origin. Geosciences (Special Issue: Martian Meteorites). https://doi.org/10.3390/geosciences8010015 DOI: https://doi.org/10.3390/geosciences8010015
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11, 959-975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
Baratoux, D., Chennaoui Aoudjehane, H., Gibson, R., Lamali, A., Reimold, W. U., Selorm Sapah, M., Charaf Chabou, M., Habarulema, J. B., Jessell, M. W., Mogessie, A., Benkhaldoun, Z., Nkhonjera, E., Mukosi, N. C., Kaire, M., Rochette, P., Sickafoose, A., Martínez-Frías, J., Hofmann, A., Folco, L., Rossi, A. P., … Abdeen, M. M. (2017). The state of planetary and space sciences in Africa. Eos, 98. https://doi.org/10.1029/2017EO075833 DOI: https://doi.org/10.1029/2017EO075833
Benkhaldoun, Z., Abahamid, A., El Azhari, Y., & Lazrek, M. (2005). Optical seeing monitoring at the Oukaïmeden in the Moroccan High Atlas Mountains: First statistics. Astronomy & Astrophysics, 441(2), 839-843. https://doi.org/10.1051/0004-6361:20042515 DOI: https://doi.org/10.1051/0004-6361:20042515
Benner, S. A., Devine, K. G., Matveeva, L. N., & Powell, D. H. (2000). The missing organic molecules on Mars. Proceedings of the National Academy of Sciences, 97(6), 2425-2430. https://doi.org/10.1073/pnas.040539497 DOI: https://doi.org/10.1073/pnas.040539497
Boamah, D., & Koeberl, C. (2007). The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential. Meteoritics & Planetary Sciences, 42, 561-567. https://doi.org/10.1111/j.1945-5100.2007.tb01061.x DOI: https://doi.org/10.1111/j.1945-5100.2007.tb01061.x
Bogard, D. D., & Johnson, P. (1983). Martian gases in an Antarctic meteorite? Science, 221, 651-654. DOI: 10.1126/science.221.4611.651 DOI: https://doi.org/10.1126/science.221.4611.651
Chennaoui Aoudjehane, H., El Kerni, H., Reimold, W.U., Baratoux, D., Koeberl, C., Bouley, S., Aoudjehane, M. (2016). The Agoudal (High Atlas Mountains, Morocco) shatter cone conundrum: A recent meteorite fall onto the remnant of an impact site. Meteoritics & Planetary Sciences, 51(8), 1497–1518. https://doi.org/10.1111/maps.12661 DOI: https://doi.org/10.1111/maps.12661
Clifford, S. M. (1993). A model for the hydrologic and climatic behaviour of water on Mars. Journal of Geophysical Research Planets, 98(E6), 10973-11016. https://doi.org/10.1029/93JE00225 DOI: https://doi.org/10.1029/93JE00225
Gillon, M., Triaud, A.H.M.J., Demory, B.–O., Jehib, E., Agol, E., Deck, K.M., Lederer, S.M., De Wit, J., Burdanov, A., Ingalls, J.G., Bolmont, E., Leconte, J., Raymond, S.N., Selsis, F., Turbet, M., Barkaoui, K., Burgasser, A., Burleigh, M.R., Carey, S.J., Chaushev, A., … Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542, 456-460. https://doi.org/10.1038/nature21360 DOI: https://doi.org/10.1038/nature21360
Hawrylewicz, E. J., Hagen, C., Tolkacz, V., & Ehrlich, R. (1967). Effect of reduced barometric pressure on water availability related to microbial growth. Life Sciences in Space Research, 5, 174-186.
He, T. (2009). International scientific collaboration of China with the G7 countries. Scientometrics, 80(3), 571-582. https://doi.org/10.1007/s11192-007-2043-y DOI: https://doi.org/10.1007/s11192-007-2043-y
Jakosky, B. M., & Shock, E. L. (1998). The biological potential of Mars, the early Earth, and Europa. Journal of Geophysical Research, 103(E8), 19359-19364. DOI: 10.1029/98je01892 DOI: https://doi.org/10.1029/98JE01892
Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1-18. https://doi.org/10.1016/S0048-7333(96)00917-1 DOI: https://doi.org/10.1016/S0048-7333(96)00917-1
Lamali, A., Rochette, P., Merabet, N., Abtout A., Maouche, S., Gattacceca, J., Ferrière, L., Hamoudi, M., Aster Team, Meziane, E. H., & Ayache, M. (2016). Geophysical and magneto-structural study of the Maâdna structure (Talemzane, Algeria): Insights on its age and origin. Meteoritics & Planetary Science, 51(12), 2249–2273. https://doi.org/10.1111/maps.12715 DOI: https://doi.org/10.1111/maps.12715
Levin, G. V., Heim, A. H., Clendenning, J. R., & Thompson, M. F. (1962). “Gulliver” ̶ A quest for life on Mars. Science, 138, 114-121. DOI: https://doi.org/10.1126/science.138.3537.114
Levin, G. V., & Straat, P. A. (1976). Viking labelled release biology experiment: Interim results. Science, 194, 1322-1329. DOI: 10.1126/science.194.4271.1322 DOI: https://doi.org/10.1126/science.194.4271.1322
Luukkonen, T., Persson, O., & Sivertsen, G. (1992). Understanding patterns of international scientific collaboration. Science, Technology, & Human Values, 17(1), 101–126. https://doi.org/10.1177/016224399201700106 DOI: https://doi.org/10.1177/016224399201700106
Mahaffy, P. R., Webster, C. R., Cabane, M., Conrad, P. G., Coll, P., Atreya, S. K., Arvey, R., Barciniak, M., Benna, M., Bleacher, L., Brinckerhoff, W. B., Eigenbrode, J. L., Carignan, D., Cascia, M., Chalmers, R. A., Dworkin, J. P., Errigo, T., Everson, P., Franz, H., & Mumm, E. (2012). The sample analysis at Mars investigation and instrument suite. Space Science Reviews, 170, 401-478. https://doi.org/10.1007/s11214-012-9879-z DOI: https://doi.org/10.1007/978-1-4614-6339-9_13
Marty, T., Vanstone, B., & Hahn, T. (2020). News media analytics in finance: a survey. Accounting & Finance, 60, 1385-1434. https://doi.org/10.1111/acfi.12466 DOI: https://doi.org/10.1111/acfi.12466
McKay, D. S., Gibson Jr., E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., & Zare, R. N. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924-930. DOI: 10.1126/science.273.5277.924 DOI: https://doi.org/10.1126/science.273.5277.924
McKay, C.P., 2020. What is life ̶ and when do we search for it on other worlds. Astrobiology, 20(2), 163-166. DOI: 10.1089/ast.2019.2136 DOI: https://doi.org/10.1089/ast.2019.2136
McEwen, A. S., Dundas, C. M., Mattson, S. S., Toigo, A. D., Ojha, L., Wray, J. J., Chojnacki, M., Byrne, S., Murchie, S. L., & Thomas, N. (2014). Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 7, 53-58. https://doi.org/10.1038/ngeo2014 DOI: https://doi.org/10.1038/ngeo2014
Mustard, J. F., Cooper, C. D., & Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 411-414. https://doi.org/10.1038/35086515 DOI: https://doi.org/10.1038/35086515
Ojha, L., Wilhelm, M. B., Murchie, S. L., McEwen, A. S., Wray, J. J., Hanley, J., Massé, M., & Chojnacki, M. (2015). Spectral evidence for hydrated salts recurring slope lineae on Mars. Nature Geosciences, 8, 829-832. https://doi.org/10.1038/ngeo2546 DOI: https://doi.org/10.1038/ngeo2546
Orosei, R. Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Di Paolo, F., Flamini, E., Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, G., Nenna, C., … Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. Nature, 361, 490-493. DOI: 10.1126/science.aar7268 DOI: https://doi.org/10.1126/science.aar7268
Osinski, G. R., Tornabene, L. L., Banerjee, N. R., Cockell, C. S., Flemming, R., Izawa, M. R. M., McCutcheon, J., Parnell, J., Preston, L. J., Pickersgill, A. E., Pontefract, A., Sapers, H. M., & Southam, G. (2013). Impact-generated hydrothermal systems on Earth and Mars. Icarus, 224(2), 347-363. https://doi.org/10.1016/j.icarus.2012.08.030 DOI: https://doi.org/10.1016/j.icarus.2012.08.030
Oyama, V. I. (1963). Use of gas chromatography for the detection of life on Mars. Nature, 200, 1058-1059. https://doi.org/10.1038/2001058a0 DOI: https://doi.org/10.1038/2001058a0
Perianes-Rodrigues, A., Waltman, L., & Jan Van Eck, N. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10, 1178-1195. https://doi.org/10.1016/j.joi.2016.10.006 DOI: https://doi.org/10.1016/j.joi.2016.10.006
Poulet, F., Bibring, J. P., Mustard, J. F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R. E., Ondet, B., Gomez, C., & The Omega Team. (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature, 438, 623-627. https://doi.org/10.1038/nature04274 DOI: https://doi.org/10.1038/nature04274
Rea, D. G. (1963). Evidence for life on Mars. Nature, 200, 114-116. https://doi.org/10.1038/200114a0 DOI: https://doi.org/10.1038/200114a0
Shirk, J. S., Haseltine, W. A., & Pimentel, G. C. (1965). Sinton bands: Evidence for deuterated water on Mars. Science, 147, 48-49. DOI: 10.1126/science.147.3653.48 DOI: https://doi.org/10.1126/science.147.3653.48
Squyres, S. W., & Knoll, A. H. (2005). Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth and Planetary Science Letters, 240, 1-10. https://doi.org/10.1016/j.epsl.2005.09.038 DOI: https://doi.org/10.1016/j.epsl.2005.09.038
Sahoui, R., Belhai, D., & Jambon, A. (2016). Impact-generated carbonate melts in the Talemzane impact structure (Laghouat, Algeria). Arabian Journal of Geosciences, 9, 641. https://doi.org/10.1007/s12517-016-2665-6. DOI: https://doi.org/10.1007/s12517-016-2665-6
Scarazzati, S., & Wang, L. (2019). The effect of collaboration on scientific research output: the case of nanoscience in Chinese regions. Scientometrics, 121, 839-868. https://doi.org/10.1007/s11192-019-03220-x DOI: https://doi.org/10.1007/s11192-019-03220-x
Sharma, M., Gupta, A., Gupta, S. K., Alsamhi, S. H., & Shvetsov, A. V. (2022). Survey on unmanned aerial vehicle for Mars exploration: Deployment use case. Drones, 6, 4. https://doi.org/10.3390/drones6010004 DOI: https://doi.org/10.3390/drones6010004
Skidmore, M. L., Foght, J. M., & Sharp, M. J. (2000). Microbial life beneath a High Arctic Glacier. Applied and Environmental Microbiology, 66(8), 3214-3220. https://doi.org/10.1128/AEM.66.8.3214-3220.2000 DOI: https://doi.org/10.1128/AEM.66.8.3214-3220.2000
Sleep, N. H., & Zahnle, K. (1998). Refugia from asteroid impacts on early Mars and the early Earth. Journal of Geophysical Research Planets, 103(E12), 28, 529-28, 544. https://doi.org/10.1029/98JE01809 DOI: https://doi.org/10.1029/98JE01809
Wynn-Williams, D. D., & Edwards, H. G. M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by Laser Raman Spectroscopy: Overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144, 486-503. https://doi.org/10.1006/icar.1999.6307 DOI: https://doi.org/10.1006/icar.1999.6307
Yen, A. S., Kim, S. S., Hecht, M. H., Frant, M. S., & Murray, B. (2000). Evidence that the reactivity of the Martian soil is due to superoxide ions. Science, 289, 1909-1912. DOI: 10.1126/science.289.5486.1909 DOI: https://doi.org/10.1126/science.289.5486.1909
Young, H., Belanger, T., Corbin, J. B., Magrill, R. M., Peterson, F. M., Thomas, D. M., Torok, A. G., & Wools, B. (1983). The ALA Glossary of Library and Information Science. Chicago: American Library Association.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.