Published
Subsoil geophysical evaluation using GPR and free software
Evaluación geofísica del subsuelo usando GPR y software libre
Keywords:
weeping willow trees, reflection, georadar, GPR, electromagnetic methods, scour, drying effect, subsoil disturbance (en)georradar, métodos electromagnéticos, reflexión, socavación, efecto de desecación en estructuras, alteración del subsuelo, sauce llorón (es)
Downloads
In this work, a geophysical characterization of the subsoil of a civil structure corresponding to the basement of a residential complex in Bogotá, Colombia was carried out, using the GPR technique. We were chosen to establish the affectation caused by weeping willow (Salix Babylonica) trees planted near the retaining wall of the structure’s foundation and its parking lot platforms. We acquired GPR profiles all throughout the area of the internal part of the basement and the outer retaining wall part. The pieces of equipment used were SIR 4000 and a HS 350 MHz center frequency antenna. The data presented a good and consistent signal. High resolution subsoil images of up to 3m in depth of the area below the parking lots were generated through the analysis of information derived from the processing and interpretation of the data. All of these were compared with information from geotechnical and topographic studies of the area. The results obtained show that the trees’ roots are causing scour due to a drying effect of the subsoil, which caused damage to the slab in the parking lot and on the retaining wall.
En este trabajo, se realizó la evaluación geofísica del subsuelo de una estructura civil correspondiente al sótano de un conjunto residencial en Bogotá, Colombia, utilizando la técnica de GPR. Se seleccionó el área para establecer el impacto causado por árboles de sauce llorón (Salix babylonica) plantados cerca del muro de contención de la cimentación de la estructura y de las plataformas del parqueadero. Se adquirieron perfiles de GPR en toda el área de la parte interna del sótano y en la parte externa del muro de contención. El equipo utilizado fue el SIR 4000 con una antena de frecuencia central de 350 MHz. Los datos presentaron una señal buena y consistente. A través del análisis de la información derivada del procesamiento e interpretación de los datos, se generaron imágenes de alta resolución del subsuelo, alcanzando profundidades de hasta 3 m en el área debajo de los parqueaderos. Toda esta información se comparó con estudios geotécnicos y topográficos de la zona. Los resultados obtenidos muestran que las raíces de los árboles están causando socavación debido a un efecto de desecación del subsuelo, lo cual ha generado daños en la losa del parqueadero y en el muro de contención.
References
Alani, A., Bianchini, L., Lantini, L., Tosti, F., Benedetto, A., 2018. Mapping the root system of matured trees using ground penetrating radar. In: 17th International Conference on Ground Penetrating Radar. Rapperswil, Switzerland, pp. 18-21.
Baker, G., Jordan, T., Talley, J., 2007. An introduction to ground penetrating radar. The Geological Society of America, Special Paper 432.
Besson, A., 2010. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements. European Journal of Soil Science, 61 (1): p. 120-132.
Böniger, U., Tronicke, J., 2010. Improving the interpretability of 3D GPR data using target–specific attributes: application to tomb detection. Journal of Archaeological Science. 37(2), 360–367. doi:10.1016/j.jas.2009.09.049.
Daniels, J., Roberts, R., Vendl, M., 1995. Ground penetrating radar for the detection of liquid contaminants. Journal of Applied Geophysics, v. 33, p. 195–207, doi:10.1016/0926-9851(94)00033-K. dGB, 2019. OpendTect user documentation version 6.4.
Dujardin, J., Douillet, G., Bano, M., Kueppers, U., Dingwell, D., 2017. GPR surveys for the characterization of the pyroclastic deposits from the 2006 eruption of Tungurahua volcano, Ecuador. EAGE. 20th European Meeting of Environmental and Engineering Geophysics Athens, Greece, 14-18 September. p. 6.
Finck, F., 2013. Introduction of a ground penetrating radar system for investigations on concrete structures. Otto-Graf-Journal Vol. 14. Sttutgard, Germany , 1–10.
GSSI, 2017. SIR 4000 Manual. Geophysical Survey Systems, Inc.
GSSI, G. S. S., 2013. GSSI Antennas Manual.
Guo, L., Chen, J., Cui, X., Bihang., F., Henry, L., 2013. Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil. 362:1–23, DOI 10.1007/s11104-012-1455-5.
Hruska, J., Cermak, J., Sustek, S., 1999. Mapping tree root systems with ground penetrating radar. Tree Physiology 19, pp. 125–130.
Huber, E., Hans, G., 2018. 2018 17th international conference on ground penetrating radar (GPR). In: RGPR — An open-source package to process and visualize GPR data. p. 1-4. doi 10.1109/ICGPR.2018.8441658. ISSN 2474-3844.
Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, vol. 5, pp. 299-314 .
Jol, H., et al. 2009. Ground penetrating radar. Theory and applications. First Edition. Elsevier. ISBN: 978-0-444-53348-7. p. 545.
Jol, H., Bristow, C. S., 2003. Stratigraphic imaging of the navajo sandstone using ground-penetrating radar. The Leading Edge 22(9): 882-887.
Khwanmuang, W., Udphuay, S., 2012. Ground penetrating radar attribute analysis for visualization of subsurface archaeological structures. The Leading Edge, 31(8). pp. 946 - 949. doi:10.1190/tle31080946.1.
Kvamme, K. L., e. a., 2006. New Approaches to the Use and Integration of Multi-Sensor Remote Sensing for Historic Resource Identification and Evaluation. Report submitted to Strategic Environmental Resource Development Program SERDP SI1263, Washington, D.C. p. 395.
Moore, G., Ryder, C., 2015. The use of ground penetrating radar to locate tree roots. Arboriculture & Urban Forestry. 41(5). pp. 245–259.
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews, Vol. 66, pp. 261–330.
Ramón, A., Romero, L., Jáuregui, P., 2010. Aplicación de radares en la penetración del suelo (gpr) para el estudio del sistema radicular en un ecosistema dunar costero. Universidad de Pamplona. Revista Ambiental Agua, Aire y Suelo. Vol. I. p. 54-58.
Taner, M., Koehler, F., Sheriff, R., 1979. Complex seismic trace analysis. GEOPHYSICS, 44(6), 1041–106. doi:10.1190/1.1440994 .
Tomecka-Suchoń, S. 2019. Correction to: Ground penetrating radar use in flood prevention. Acta Geophysica. Springer. 67:1679–1691.
White, R., 1991. Properties of instantaneous seismic attributes. The Leading Edge, 10(7), 26–32. doi:10.1190/1.1436827 .
Zhang, X., Derival, M., Albrecht, U., Ampatzidis, Y., 2019. Evaluation of a ground penetrating radar to map the root architecture of hlb-infected citrus trees. Agronomy. 9,354. doi:10.3390/agronomy9070354.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.