Published
Detection and study of a high magnitude seismic event from GPS data: Case study of the 2011 Tohoku-Oki earthquake
Detección y estudio de un evento sísmico de gran magnitud a partir de datos GPS: Caso de estudio del terremoto Tohoku-Oki de 2011
DOI:
https://doi.org/10.15446/esrj.v26n2.97735Keywords:
seismogeodesy, gps, tohoku-oki, geodesy (en)Sismogeodesia; GPS; terremoto; Tohoku-Oki. (es)
Downloads
The advent of GPS provided a new way of measuring surface displacements due to earthquakes by deploying GPS networks within active seismic areas. Japan is located in the confluence of several tectonic plates, hence its seismicity. In order to surveille this activity, one of wider GPS network in the world was deployed, i.e., GEONET. By processing data from 93 GEONET reference stations, we analyze the 2011 Tohoku-Oki earthquake using PPP strategy. We studied the time series during the event setting up a threshold value at we consider the time series are being altered by the earthquake. We also identified the time after the occurrence when the maximum displacements happen. With the study of these two parameters, we aim to show their different behavior as the main shock propagates along the Japan islands, with a focus on a better understanding of the earthquake and its propagation. To achieving this, a least square adjustment method was used to relate epicentral distance to topocentric displacements and the time of detection to epicentral distance. The results show an exponential behavior of the distance-displacement regression versus a linear behavior of the distance-time regression. Besides, we use the former linear regression to calculate and approximation of the velocity of the shock waves.
La aparición del GPS proporcionó una nueva forma de medir los desplazamientos en superficie debidos a los terremotos mediante el despliegue de redes de GPS en zonas sísmicas activas. Japón está situado en la confluencia de varias placas tectónicas, de ahí su sismicidad. Para vigilar esta actividad, se desplegó una de las redes de GPS más amplias del mundo, i.e., GEONET. Al procesar los datos de 93 estaciones de referencia de GEONET, analizamos el terremoto de Tohoku-Oki de 2011 utilizando la estrategia PPP. Estudiamos las series temporales generadas durante el evento estableciendo un valor umbral en el que consideramos que las series temporales están siendo alteradas por el terremoto. También identificamos el momento posterior al suceso en el que se producen los máximos desplazamientos. Con el estudio de estos dos parámetros, pretendemos mostrar su diferente comportamiento a medida que la sacudida principal se propaga a lo largo de las islas de Japón, con el objetivo de comprender mejor el terremoto y su propagación. Para ello, se utilizó un método de ajuste de mínimos cuadrados para relacionar la distancia epicentral con los desplazamientos topocéntricos y el tiempo de detección con la distancia epicentral. Los resultados muestran un comportamiento exponencial de la regresión distancia-desplazamiento frente a un comportamiento lineal de la regresión distancia-tiempo. Además, utilizamos la primera regresión lineal para calcular y aproximar la velocidad de las ondas de choque.
References
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., & Boucher, C. (2007). ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research: Solid Earth, 112(9). https://doi.org/10.1029/2007JB004949
Amiri, M. A., & Gocić, M. (2021). Analyzing the applicability of some precipitation concentration indices over Serbia. Theoretical and Applied Climatology, 146(1), 645–656. https://doi.org/10.1007/s00704-021-03743-5
Arab Amiri, M., & Gocić, M. (2021). Innovative trend analysis of annual precipitation in Serbia during 1946–2019. Environmental Earth Sciences, 80(23), 777. https://doi.org/10.1007/s12665-021-10095-w
Aris, W. A. W., Musa, T. A., Lee, H., Choi, Y., & Yoon, H. (2016). Preliminary estimation of postseismic deformation parameters from continuous GPS data in Korea peninsula and ieodo after the 2011 tohoku-oki MW9.0 Earthquake. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4W1), 55–59. https://doi.org/10.5194/isprs-archives-XLII-4-W1-55-2016
Astafyeva, E., Rolland, L., Lognonné, P., Khelfi, K., & Yahagi, T. (2013). Parameters of seismic source as deduced from 1 Hz ionospheric GPS data: Case-study of the 2011 Tohoku-Oki event. Journal of Geophysical Research (Space Physics), 118, 5942–5950. https://doi.org/10.1002/jgra.50556
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4, 1027. https://doi.org/10.1029/2001GC000252
Bock, H., Dach, R., Jäggi, A., & Beutler, G. (2009). High-rate GPS clock corrections from CODE: Support of 1 Hz applications. Journal of Geodesy, 83(11), 1083–1094. https://doi.org/10.1007/s00190-009-0326-1
Bock, Y. (1991). Continuous monitoring of crustal deformation. GPS World, Vol. 2, Issue 6, pp. 40–47.
Boehm, J., Heinkelmann, R., & Schuh, H. (2007). Short note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81(10), 679–683. https://doi.org/10.1007/s00190-007-0135-3
Branzanti, M., Colosimo, G., Crespi, M., & Mazzoni, A. (2013). GPS near-real-time coseismic displacements for the great tohoku-oki earthquake. IEEE Geoscience and Remote Sensing Letters, 10(2), 372–376. https://doi.org/10.1109/LGRS.2012.2207704
Brizzi, S., Sandri, L., Funiciello, F., Corbi, F., Piromallo, C., & Heuret, A. (2018). Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes. Tectonophysics, 728–729, 92-103. https://doi.org/10.1016/j.tecto.2018.01.027
Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H., & Galetzka, J. (2008). Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research: Solid Earth, 113(5). https://doi.org/10.1029/2007JB004981
Colosimo, G., Crespi, M., & Mazzoni, A. (2011). Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration. Journal of Geophysical Research: Solid Earth, 116(11). https://doi.org/10.1029/2010JB007941
Deng, X., Liu, G., Zhou, T., & Peng, S. (2019). Total least-squares EIO model, algorithms and applications. Geodesy and Geodynamics, 10(1), 17–25. https://doi.org/10.1016/j.geog.2018.12.001
El-Fiky, G., & Kato, T. (2006). Secular crustal deformation and interplate coupling of the Japanese Islands as deduced from continuous GPS array, 1996-2001. Tectonophysics, 422(1–4), 1–22. https://doi.org/10.1016/j.tecto.2006.04.021
Feigl, K. L., Agnew, D. C., Bock, Y., Dong, D., Donnellan, A., Hager, B. H., Herring, T. A., Jackson, D. D., Jordan, T. H., King, R. W., Larsen, S., Larson, K. M., Murray, M. H., Shen, Z. kang, & Webb, F. H. (1993). Space geodetic measurement of crustal deformation in central and southern California, 1984-1992. Journal of Geophysical Research, 98(B12), 1984–1992. https://doi.org/10.1029/93jb02405
Feng, G., Ding, X., Li, Z., Mi, J., Zhang, L., & Omura, M. (2012). Calibration of an InSAR-Derived Coseimic Deformation Map associated with the 2011 mw-9.0 Tohoku-Oki earthquake. IEEE Geoscience and Remote Sensing Letters, 9(2), 302–306. https://doi.org/10.1109/LGRS.2011.2168191
Feng, G., & Jónsson, S. (2012). Shortcomings of InSAR for studying megathrust earthquakes: The case of the Mw9.0 Tohoku-Oki earthquake. Geophysical Research Letters, 39(10), 1–6. https://doi.org/10.1029/2012GL051628
Fratarcangeli, F., Savastano, G., D’Achille, M. C., Mazzoni, A., Crespi, M., Riguzzi, F., Devoti, R., & Pietrantonio, G. VADASE Reliability and Accuracy of Real-Time Displacement Estimation: Application to the Central Italy 2016 Earthquakes. Remote Sensing, 10(8), 1201. https://doi.org/10.3390/rs10081201
Freymueller, J. T., Kellogg, J. N., & Vega, V. (1993). Plate motions in the north Andean region. Journal of Geophysical Research, 98(B12). https://doi.org/10.1029/93jb00520
Fujita, M., Nishimura, T., & Miyazaki, S. (2019). Detection of small crustal deformation caused by slow slip events in southwest Japan using GNSS and tremor data. Earth, Planets and Space, 71(1), 96. https://doi.org/10.1186/s40623-019-1075-x
Furukawa, Y. (1999). Interplate Coupling and deformation in the accretionary prism in the Southwest Japan subduction zone. Geophysical Research Letters, 26(20), 3145–3148.
Gao, Y., & Shen, X. (2002). A New Method for Carrier-Phase-Based Precise Point Positioning. Navigation, 49, 109–116. https://doi.org/10.1002/j.2161-4296.2002.tb00260.x
Gautam, P. K., Sathyaseelan, R., Pappachen, J. P., Kumar, N., Biswas, A., Philip, G., Dabral, C. P., & Pal, S. K. (2019). GPS measured static and kinematic offsets at near and far field of the 2011 Mw 9.0 Tohoku-Oki earthquake. Geodesy and Geodynamics, 10(3), 213–227. https://doi.org/10.1016/j.geog.2019.03.003
Ge, L. (1999). GPS Seismometer and its Signal Extraction. Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS), 41-51.
Ge, L., Han, S., Rizos, C., Ishikawa, Y., Hoshiba, M., Yoshida, Y., Izawa, M., Hashimoto, N., & Himori, S. (2000). GPS seismometers with up to 20 Hz sampling rate. Earth, Planets and Space, 52(10), 881–884. https://doi.org/10.1186/BF03352300
Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399. https://doi.org/10.1007/s00190-007-0187-4
Grapenthin, R., & Freymueller, J. T. (2011). The dynamics of a seismic wave field: Animation and analysis of kinematic GPS data recorded during the 2011 Tohoku-oki earthquake, Japan. Geophysical Research Letters, 38(18). https://doi.org/https://doi.org/10.1029/2011GL048405
Gocić, M., & Arab Amiri, M. (2021). Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags. Water Resources Management, 35(6), 1913–1926. https://doi.org/10.1007/s11269-021-02820-8
Goto, H., & Morikawa, H. (2012). Ground motion characteristics during the 2011 off the Pacific Coast of Tohoku Earthquake. Soils and Foundations, 52(5), 769–779. https://doi.org/10.1016/j.sandf.2012.11.002
Hashimoto, C., Fukui, K., & Matsu’ura, M. (2004). 3-D modelling of plate interfaces and numerical simulation of long-term crustal deformation in and around Japan. Pure and Applied Geophysics, 161(9–10), 2053–2068. https://doi.org/10.1007/s00024-004-2548-8
Héroux, P., Kouba, J., Collins, P., & Lahaye, F. (2001). GPS Carrier-Phase Point Positioning with Precise Orbit Products. GPS Solutions, 5(2), 12–28.
Hindle, D., & Mackey, K. (2011). Earthquake recurrence and magnitude and seismic deformation of the northwestern Okhotsk plate, northeast Russia. Journal of Geophysical Research: Solid Earth, 116(2), 1–12. https://doi.org/10.1029/2010JB007409
Hirahara, K., Nakano, T., Hoso, Y., Matsuo, S., & Obana, K. (1994). An experiment for GPS strain seismometer. Proceedings of the Japanese Symposium on GPS, 15–16 December, Tokyo, Japan, pp. 67–75.
Hirose, F., Miyaoka, K., Hayashimoto, N., Yamazaki, T., & Nakamura, M. (2011). Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) —Seismicity: foreshocks, mainshock, aftershocks, and induced activity. Earth, Planets, and Space, 63(7), 513–518. https://doi.org/10.5047/eps.2011.05.019
Hoshiba, M., Iwakiri, K., Hayashimoto, N., Shimoyama, T., Hirano, K., Yamada, Y., Ishigaki, Y., & Kikuta, H. (2011). Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) —Earthquake Early Warning and observed seismic intensity. Earth, Planets, and Space, 63(7), 547–551. https://doi.org/10.5047/eps.2011.05.031
Hsu, Y. J., Simons, M., Avouac, J. P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodird, L., & Bock, Y. (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science, 312, 1921–1926. DOI: 10.1126/science.1126960
Ide, S., & Aochi, H. (2013). Historical seismicity and dynamic rupture process of the 2011 Tohoku-Oki earthquake. Tectonophysics, 600, 1–13. https://doi.org/10.1016/j.tecto.2012.10.018
Ishibashi, K. (2004). Seismotectonic modeling of the repeating M 7-class disastrous Odawara earthquake in the Izu collision zone, central Japan. Earth, Planets and Space, 56(8), 843–858. https://doi.org/10.1186/BF03353091
Ishii, M. (2011). High-frequency rupture properties of the Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth, Planets, and Space, 63, 7, 609–614. https://doi.org/10.5047/eps.2011.07.009
Kano, M., Fukuda, J., Miyazaki, S., & Nakamura, M. (2018). Spatiotemporal Evolution of Recurrent Slow Slip Events Along the Southern Ryukyu Subduction Zone, Japan, From 2010 to 2013. Journal of Geophysical Research: Solid Earth, 123(8), 7090–7107. https://doi.org/10.1029/2018JB016072
Katsumata, K., Wada, N., & Kasahara, M. (2003). Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction. Journal of Geophysical Research: Solid Earth, 108(B12). https://doi.org/10.1029/2002JB002175
Katsumata, K., Ichiyanagi, M., Ohzono, M., Aoyama, H., Tanaka, R., Takada, M., Yamaguchi, T., Okada, K., Takahashi, H., Sakai, S., Matsumoto, S., Okada, T., Matsuzawa, T., Hirano, S., Terakawa, T., Horikawa, S., Kosuga, M., Katao, H., Iio, Y., Asano, Y. (2019). The 2018 Hokkaido Eastern Iburi earthquake (M JMA = 6.7) was triggered by a strike-slip faulting in a stepover segment: insights from the aftershock distribution and the focal mechanism solution of the main shock. Earth, Planets and Space, 71(1). https://doi.org/10.1186/s40623-019-1032-8
Kikuchi, M., & Kanamori, H. (1995). The Shikotan earthquake of October 4, 1994: Lithospheric earthquake. Geophysical Research Letters, 22, 1025–1028. https://doi.org/10.1029/95GL00883
Kim, S., Ree, J. H., Yoon, H. S., Choi, B. K., Park, P. H., Minato, S., Tsuji, T., Ohmi, S., & Matsuoka, T. (2012). Monitoring seismic velocity change caused by the 2011 Tohoku-oki earthquake using ambient noise records. Geophysical Research Letters, 37(9), 1–6. https://doi.org/10.1029/2012GL051405
Kumar, K. V., Miyashita, K., & Li, J. (2002). Secular crustal deformation in central Japan, based on the wavelet analysis of GPS time-series data. Earth, Planets and Space, 54(2), 133–139. https://doi.org/10.1186/BF03351713
Larson, K. M., Bodin, P., & Gomberg, J. (2003). Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake. Science, 300(5624), 1421–1424. https://doi.org/10.1126/science.1084531
Larson, K. M. (2009). GPS seismology. Journal of Geodesy, 83(3–4), 227–233. https://doi.org/10.1007/s00190-008-0233-x
Lay, T. (2018). A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophysics, 733, 4–36. https://doi.org/10.1016/j.tecto.2017.09.022
Loveless, J. P., & Meade, B. J. (2010). Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. Journal of Geophysical Research, 115(B2), 1–35. https://doi.org/10.1029/2008jb006248
Li, S., Fukuda, J., & Oncken, O. (2020). Geodetic Evidence of Time-Dependent Viscoelastic Interseismic Deformation Driven by Megathrust Locking in the Southwest Japan Subduction Zone. Geophysical Research Letters, 47(4), 1–10. https://doi.org/10.1029/2019GL085551
Li, X., Zhang, X., & Guo, B. (2013). Application of collocated GPS and seismic sensors to earthquake monitoring and early warning. Sensors, 13(11), 14261–14276. https://doi.org/10.3390/s131114261
Lichten, S. M., & Border, J. S. (1987). Strategies for high-precision Global Positioning System orbit determination. Journal of Geophysical Research: Solid Earth, 92(B12), 12751–12762. https://doi.org/https://doi.org/10.1029/JB092iB12p12751
Lin, T. L., & Wu, Y. M. (2010). Magnitude determination using strong ground-motion attenuation in earthquake early warning. Geophysical Research Letters, 37(7). https://doi.org/10.1029/2010GL042502
Linuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., Ohzono, M., Tsushima, H., Suzuki, S., Fujimoto, H., & Miura, S. (2012). Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. Journal of Geophysical Research: Solid Earth, 117(7), 1–18. https://doi.org/10.1029/2012JB009186
Martín, A., Anquela, A. B., Berné, J. L., & Sanmartin, M. (2012). Kinematic GNSS-PPP results from various software packages and raw data configurations. Scientific Research and Essays, 7(3), 419–431. https://doi.org/10.5897/SRE11.1885
Mazzotti, S., Le Pichon, X., Henry, P., & Miyazaki, S. I. (2000). Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. Journal of Geophysical Research: Solid Earth, 105(B6), 13159–13177. https://doi.org/10.1029/2000jb900060
Melbourn, T. I., Webb, F. H., Stock, J. M. & Reigbar, C. (2002). Rapid postseismic transients in subduction zones from continuous GPS. Journal of Geophysical Research, 107, 2241. https://doi.org/10.1029/2001JB000555
Melgar, D., Crowell, B. W., Bock, Y., & Haase, J. S. (2013). Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy. Geophysical Research Letters, 40(12), 2963–2968. https://doi.org/10.1002/grl.50590
Members, B. P. (1996). GPS measurements to constrain geodynamic processes in Fennoscandia. Eos, Transactions American Geophysical Union, 77(35), 337–341. https://doi.org/https://doi.org/10.1029/96EO00233
Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research: Solid Earth, 117(3). https://doi.org/10.1029/2011JB008736
Michel, C., Kelevitz, K., Houlié, N., Edwards, B., Psimoulis, P., Su, Z., Clinton, J., & Giardini, D. (2017). The potential of high-rate GPS for strong ground motion assessment. Bulletin of the Seismological Society of America, 107(4), 1849–1859. https://doi.org/10.1785/0120160296
Morikawa, N., & Fujiwara, H. (2013). A new ground motion prediction equation for Japan applicable up to M9 mega-earthquake. Journal of Disaster Research, 8(5), 878–888. https://doi.org/10.20965/jdr.2013.p0878
Nishimura, T., Miura, S., Tachibana, K., Hashimoto, K., Sato, T., Hori, S., Murakami, E., Kono, T., Nida, K., Mishina, M., Hirasawa, T., & Miyazaki, S. (2000). Distribution of seismic coupling on the subducting plate boundary in northeastern Japan inferred from GPS observations. Tectonophysics, 323(3), 217–238. https://doi.org/10.1016/S0040-1951(00)00108-6
Nishimura, T., Sagiya, T., & Stein, R. S. (2007). Crustal block kinematics and seismic potential of the northernmost Philippine Sea plate and Izu icroplate, central Japan, inferred from GPS and leveling data. Journal of Geophysical Research: Solid Earth, 112(5), 1–22. https://doi.org/10.1029/2005JB004102
Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., Fujimoto, H., Iinuma, T., Tachibana, K., Demachi, T., Sato, T., Ohzono, M., & Umino, N. (2012). Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (M w 9.0). Journal of Geophysical Research: Solid Earth, 117(2), 1–17. https://doi.org/10.1029/2011JB008750
Ohta, Y., Ohzono, M., Miura, S., Iinuma, T., Tachibana, K., Takatsuka, K., Miyao, K., Sato, T., & Umino, N. (2008). Coseismic fault model of the 2008 Iwate-Miyagi Nairiku earthquake deduced by a dense GPS network. Earth, Planets, and Space, 60(12), 1197–1201. https://doi.org/10.1186/BF03352878
Ozawa, S., Kaidzu, M., Murakami, M., Imakiire, T., & Hatanaka, Y. (2004). Coseismic and postseismic crustal deformation after the Mw 8 Tokachi-oki earthquake in Japan. Earth, Planets and Space, 56(7), 675–680. https://doi.org/10.1186/BF03352530
Ozawa, S., Murakami, M., Kaidzu, M., & Hatanaka, Y. (2005). Transient crustal deformation in Tokai region, Central Japan, until May 2004. Earth, Planets and Space, 57(10), 909–915. https://doi.org/10.1186/BF03351870
Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373–376. https://doi.org/10.1038/nature10227
Ozel, N., & Moriya, T. (1999). Different stress directions in the aftershock focal mechanisms of the Kushiro-Oki earthquake of Jan. 15, 1993, SE Hokkaido, Japan, and horizontal rupture in the double seismic zone. Tectonophysics, 313(3), 307–327. https://doi.org/10.1016/S0040-1951(99)00207-3
Peng, Z., & Ben-Zion, Y. (2006). Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anatolian fault and strong ground motion. Pure and Applied Geophysics, 163(2–3), 567–600. https://doi.org/10.1007/s00024-005-0034-6
Sagiya, T., Miyazaki, S., & Tada, T. (2000). Continuous GPS array and present-day crustal deformation of Japan. Pure and Applied Geophysics, 157(11–12), 2303–2322. https://doi.org/10.1007/978-3-0348-7695-7_26
Sagiya, T. (2004). A decade of GEONET: 1994-2003 - The continuous GPS observation in Japan and its impact on earthquake studies. Earth, Planets and Space, 56(8), 1994–2003. https://doi.org/10.1186/BF03353077
Sagiya, T., Nishimura, T., Iio, Y., & Tada, T. (2002). Crustal deformation around the northern and central Itoigawa-Shizuoka Tectonic Line. Earth, Planets and Space, 54, 1059–1063. https://doi.org/10.1186/BF03353302
Schmid, R., Steigenberger, P., Gendt, G., Ge, M., & Rothacher, M. (2007). Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. Journal of Geodesy, 81(12), 781–798. https://doi.org/10.1007/s00190-007-0148-y
Shelly, D. R., Beroza, G. C., Zhang, H., Thurber, C. H., & Ide, S. (2006). High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. Journal of Geophysical Research: Solid Earth, 111(6), 1–10. https://doi.org/10.1029/2005JB004081
Shishikura, M. (2003). Cycle of interplate earthquake along the Sagami trough deduced from tectonic geomorphology. Bulletin of the Earthquake Research Institute, 78, 245–254.
Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J. P., Wei, S., Chu, R., Helmberger, D. V, Kanamori, H., Hetland, E., Moore, A. W., & Webb, F. H. (2011). The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science, 332(6036), 1421–1425. https://doi.org/10.1126/science.1206731
Stein, S., & Okal, E. A. (2005). Seismology Speed and size of the Sumatra earthquake. Nature, 434(7033), 581–582. https://doi.org/10.1038/434581a
Suzuki, S., & Kasahara, M. (1996). Unbending and horizontal fracture of the subducting Pacific plate, as evidenced by the 1993 Kushiro-oki and the 1981 and 1987 intermediate-depth earthquakes in Hokkaido. Physics of the Earth and Planetary Interiors, 93(1), 91–104. https://doi.org/https://doi.org/10.1016/0031-9201(95)03090-5
Suzuki, W., Aoi, S., Sekiguchi, H., & Kunugi, T. (2011). Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011GL049136
Szołucha, M., Kroszczyński, K., & Kiliszek, D. (2018). Accuracy of Precise Point Positioning (PPP) with the use of different International GNSS Service (IGS) products and stochastic modelling. Geodesy and Cartography, 67(2), 207–238. https://doi.org/10.24425/gac.2018.125472
Tajima, F., Mori, J., & Kennett, B. L. N. (2013). A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics, 586, 15–34. https://doi.org/10.1016/j.tecto.2012.09.014
Vidale, J. E., & Li, Y. G. (2003). Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature, 421(6922), 524–526. https://doi.org/10.1038/nature01354
Wallace, L. M., Beavan, J., & Mccaffrey, R. (2004). Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. Journal of Geophysical Research, 109, 1–21. https://doi.org/10.1029/2004JB003241
Wang, M., Li, Q., Wang, F., Zhang, R., Wang, Y. Z., Shi, H. B., Zhang, P. Z., & Shen, Z. K. (2011). Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System. Chinese Science Bulletin, 56(23), 2419–2424. https://doi.org/10.1007/s11434-011-4588-7
Watanabe, T., Takahashi, H., Ichiyanagi, M., Okayama, M., Takada, M., Otsuka, R., Hirata, K., Morita, S., Kasahara, M., & Mikada, H. (2006). Seismological monitoring on the 2003 Tokachi-oki earthquake, derived from off Kushiro permanent cabled OBSs and land-based observations. Tectonophysics, 426(1–2), 107–118. https://doi.org/10.1016/j.tecto.2006.02.016
Xu, P., Shu, Y., Liu, J., Nishimura, T., Shi, Y., & Freymueller, J. T. (2019). A large scale of apparent sudden movements in Japan detected by high-rate GPS after the 2011 Tohoku Mw9.0 earthquake: Physical signals or unidentified artifacts? Earth, Planets and Space, 71(1). https://doi.org/10.1186/s40623-019-1023-9
Yokota, Y., Koketsu, K., Hikima, K., & Miyazaki, S. (2009). Ability of 1-Hz GPS data to infer the source process of a medium-sized earthquake: The case of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake. Geophysical Research Letters, 36(12), L12301-n/a. https://doi.org/10.1029/2009GL037799
Yoshioka, S., Yabuki, T., Sagiya, T., Tada, T., & Matsu’ura, M. (1994). Interplate coupling in the Kanto district, central Japan, deduced from geodetic data inversion and its tectonic implications. Tectonophysics, 229(3), 181–200. https://doi.org/https://doi.org/10.1016/0040-1951(94)90028-0
Zhan, W., Huang, L. R., Yang, B., Feng, S. T., Liu, Z. G., & Meng, X. G. (2013). Coseismic displacements of the 2011 Tohoku-Oki Earthquake measured by high-rate GPS. Frontiers of Discontinuous Numerical Methods and Practical Simulations in Engineering and Disaster Prevention. Proceedings of the 11th Int. Conf. on Analysis of Discontinuous Deformation, ICADD 2013, 41474002, 525–528. https://doi.org/10.1201/b15791-74
Zhang, Y., Xu, L., & Chen, Y. T. (2012). Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data. Earthquake Science, 25(2), 129–135. https://doi.org/10.1007/s11589-012-0839-1
Zhao, P., Alexandrov, I., Jahn, B. M., & Ivin, V. (2018). Timing of Okhotsk Sea Plate Collision With Eurasia Plate: Zircon U-Pb Age Constraints From the Sakhalin Island, Russian Far East. Journal of Geophysical Research: Solid Earth, 123(9), 8279–8293. https://doi.org/10.1029/2018JB015800
Zheng, Y., Li, J., Xie, Z., & Ritzwoller, M. (2012). 5Hz GPS seismology of the El Mayor-Cucapah earthquake: Estimating the earthquake focal mechanism. Geophysical Journal International, 190, 1723–1732. https://doi.org/10.1111/j.1365-246X.2012.05576.x
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017. https://doi.org/https://doi.org/10.1029/96JB03860
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Trong Tran Dinh, Dinh Huy Nguyen, Ngoc Quang Vu, Quoc long Nguyen. (2023). Crustal displacement in Vietnam using CORS data during 2018 - 2021. Earth Sciences Research Journal, 27(1), p.27. https://doi.org/10.15446/esrj.v27n1.102630.
2. Halil İbrahim Solak, Murat Doruk Şentürk, Ece Bengünaz Çakanşimşek, Şeyma Şafak Yaşar, Eda Esma Eyübagil, Atalay Okan Erdoğan, Bahadır Aktuğ, Cemal Özer Yiğit, İbrahim Tiryakioğlu. (2024). Earthquake magnitude estimation based on peak ground displacements recorded by high-rate GNSS for February 6, 2023, earthquake sequence in Turkiye. The European Physical Journal Plus, 139(9) https://doi.org/10.1140/epjp/s13360-024-05576-3.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.