Published

2018-10-01

Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China

Características de mineralogía genética de piritas y cuarzos y su importancia en el yacimiento aurífero de Gaosongshan, Provincia de Heilongjiang, al noreste de China

DOI:

https://doi.org/10.15446/esrj.v22n4.57512

Keywords:

Pyrite, Quartz, Rare earth elements, Genetic Mineralogy, Gaosongshan Gold Deposit, China (en)
Piritas, cuarzos, tierras raras, mineralogía genética, yacimiento aurífero de Gaosongshan, China, (es)

Downloads

Authors

  • Huiqing Geng China University of Geosciences
  • Xuexiang Gu China University of Geosciences
  • Yongmei Zhang China University of Geosciences

The Gaosongshan epithermal gold deposit in Heilongjiang, Northeast China, is hosted by the Lower Cretaceous intermediate-basic volcanic rocks. Three auriferous quartz veins including eleven gold orebodies were all discovered in tectonoclastic zones. Genetic mineralogy study including the thermoelectricity, rare earth elements and trace elements of pyrite and rare earth elements of quartz were carried out. Thermoelectric conductive type of pyrite is mainly N-P type. Calculating the thermoelectric parameters XNP and denudation percentage γ of pyrites from orebodies 1-I, 2-II and 2-IV, suggests that gold orebodies are all eroded to their middle-lower parts. The variable range of Co concentrations (51.3-264.0ppm) and Ni concentrations (68.9-258.0ppm) and Co: Ni ratio (0.31-1.90), together with relatively small Sr/Ba ratio in ore-bearing pyrites (0.11-0.50), supports a hydrothermal origin of mineralization at Gaosongshan gold deposit. Compared with volcanic rocks, the chondrite-normalized REE patterns of ore-bearing pyrites and quartz are all LREE enriched with similar ΣLREE/ΣHREE ratio ranging from 7.37-13.68 in ore-bearing pyrites, 4.74-15.37 in ore-bearing quartz and no Ce anomalies. δEu values in ore-bearing pyrites and quartz are 0.65-1.66 (average=0.93) and 0.66-1.62 (average=1.03), respectively. δEu values of volcanic rocks are 0.86­1.07 (average 0.94), suggesting no obvious negative Eu anomalies. Similar REE characteristics of ore-bearing pyrites and quartz and volcanic rocks, together with previous oxygen and hydrogen isotope studies of quartz, suggest that the ore-forming fluids of the Gaosongshan gold deposit were mainly magmatic origin which was associated with andesitic magma and was partly mixed with atmospheric water. Comparing trace elements characteristics of ore-bearing pyrites with volcanic rocks, together with previous S isotopic studies, it is concluded that the ore-forming materials were derived from the surrounding rocks. Slight changes of Y/Ho (23.80­27.28), Zr/Hf (35.41­47.83), Nb/Ta (10.96­18.52) in ore-bearing pyrites indicate that the ore-forming fluid system is relatively stable during the ore-forming process. 

El yacimiento aurífero epitermal de Gaosongshan en Heilongjiang, al noreste de China, está incrustado en una formación de rocas volcánicas en el Cretácico Inferior. Tres vetas de cuarzo aurífero que incluyen once yacimientos de oro se descubrieron en zonas tectonoclásticas. Se realizaron análisis de mineralogía genética, entre estos de termoelectricidad, de tierras raras, y de trazas de piritas y tierras raras. El tipo de conductividad termoeléctrica de la pirita es principalmente tipo N-P. El cálculo de los parámetros XNP de termoelectricidad y el porcentaje de denudación γ de piritas en los yacimientos 1-I, 2-II y 2-IV sugiere que los yacimientos auríferos están erosionados en sus partes medias y bajas. El rango variable de las concentraciones de Co (51.3-264.0ppm) y de Ni (68.9-258.0ppm), y el índice Co: Ni (0.31-1.90), junto con un índice pequeño de Sr/Ba de piritas mineralizadas (0.11-0.50) suponen un origen hidrotérmico de mineralización en el yacimiento aurífero de Gaosongshan. Comparado con rocas volcánicas, los patrones de tierras raras en las condritas normalizadas de piritas y cuarzos son todos tierras raras ligeros enriquecidos con índices ΣLREE/ΣHREE similares y que se ubican en el rango 7.37-13.68 en las piritas mineralizadas, 4.74-15.37 en los cuarzos mineralizados y sin anomalías de Cerio. Los valores  δEu en piritas mineralizadas y cuarzos son de 0.65-1.66 (con promedio de 0.93) y 0.66-1.62 (con promedio de 1.03), respectivamente. Los valores  δEu de las rocas volcánicas son 0.861.07 (con promedio de 0.94), lo que sugiere que no hay anomalías negativas de europio. Las características similares de tierras raras entre piritas mineralizadas, cuarzos y rocas volcánicas, al igual que estudios previos de isotopos de oxígeno e hidrógeno en cuarzos, sugieren que los fluidos hidrotermales del yacimiento de Gaosongshan son principalmente de origen magmático, el cual está asociado con el magma andesítico, y está parcialmente mezclado con agua atmosférica. Al comparar las características de los elementos traza en las piritas mineralizadas con las rocas volcánicas, y basados en estudios isotópicos del azufre, se puede concluir que los materiales hidrotermales se derivan de las rocas circundantes. Pequeños cambios de las piritas mineralizadas en Y/Ho (23.8027.28), Zr/Hf (35.4147.83), Nb/Ta (10.96-1852) indican que el sistema hidrotermal del depósito es relativamente estabe durante los procesos hidrotérmicos.

References

Arribas, A. Jr. (1995). Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineralogical Association of Canada Short Courses Notes, 23, 419-454.

Bajwah, Z. U., Seccombe, P. K. & Offier, R. (1987). Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22(4), 292-300.

Bau, M. & Dulski, P. (1995). Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2-3), 213-223.

Bi, X. W., Hu, R. Z., Peng, J. T. & Wu, K. X. (2004). REE and HFSE geochemical characteristics of pyrites in Yao’an gold deposit: tracing ore forming fluid signatures (in Chinese with English abstract). Bulletin of Mineralogy, Petrology and Geochemistry, 23(1), 1-4.

Bie, F. L., Hou, Z. Q., Li, S. R., Su, W. C. & Xu, J. H. (2000). Composition characteristics of rare earth elements in metallogenetic fluid of the Gacun super large ‘Kuroko’-type deposit (in Chinese with English abstract). Acta Petrologica Sinica, 16(4), 575-580.

Bonham, H. F. (1986). Models for volcanic-hosted epithermal precious metal deposits: a review. In: International Volcanological Congress, Symposium 5. Hamilton, New Zealand, 13-17.

Bralia, A., Sabatini, G. & Troja, F. (1979). A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: evidences from southern Tuscany pyritic deposits. Mineralium Deposita, 14(3), 353-374.

Brill, B. A. (1989). Trace element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia. Canadian Mineralogist, 27(2), 263-274.

Chen, G. W., Xia, B., Xiao, Z. Y., Yu, H. X., Wang, H., Zhong, Z. H. & Wang, G. Q. (2001). Characteristics of epithermal deposits and the prospecting guide in China (in Chinese with English abstract). Geology and Resources, 10(3), 165-171.

Chen, G. Y. (1987). Genetic mineralogy and prospecting mineralogy (in Chinese). Chongqing Publishing House, Chongqing, 874pp.

Chen, Y. J., Pirajno, F., Wu, G., Qi, J. P. & Xiong, X. L. (2012). Epithermal deposits in north Xinjiang, NW China. International Journal of Earth Sciences, 101(4), 889-917.

Cooke, D. R., & Simmons, S. F. (2000). Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13, 221-244.

Date, A. R. & Gray, A. L. (1985). Determination of trace elements in geological samples by inductively coupled plasma source mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 40(1), 115-122.

Dennen, W. H. (1967). Trace elements in quartz as indicators of provenance. Geological Society of America Bulletin, 78(1), 125-130.

Fan, J. G, Ni, P., Su, W. C., Qi, L. & Tian, J. H. (2000). Characteristics and significance of rare earth elements in quartz of Sidaogou hydrothermal gold deposit, Liaoning (in Chinese with English abstract). Acta Petrologica Sinica, 16(4), 587-590.

Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D.R., Meinert, L. & Bouhier, V. (2015). Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66, 366-387.

Ge, C. H. & Han, F. (1987). Geology and geochemistry of the exhalation sedimentary genesis ore deposit at Dabaoshan, Guangdong Province (in Chinese). Science and Technology Publishing House, Beijing, 111pp.

Ghazi, A. M., Vanko, D. A., Roedder, E. & Seeley, R. C. (1993). Determination of rare earth elements in fluid inclusions by inductively coupled plasma-mass spectrometry (ICP-MS). Geochimica et Cosmochimica Acta, 57(18), 4513-4516.

Götze, J. (2009). Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineralogical Magazine, 73(4), 645-671.

Hao, B. W., Deng, J., Bagas, L., Ge, L. S., Nie, F. J., Turner, S. & Qing, M. (2016) The Gaosongshan epithermal gold deposit in the Lesser Hinggan Range of the Heilongjiang Province, NE China: Implications for Early Cretaceous mineralization. Ore Geology Reviews, 73(2), 179-197.

Hao, B. W., Zhang, W. Z., Ge, L. S., Qing, M., Zhu, P., Zhao, H. H., Xue, J. G. & Ren, C. T. (2014). Study of gold enriched mechanism of Gaosongshan epithermal gold deposit in Lesser Xingan Range, NE of China (in Chinese with English abstract). Journal of Mineralogy and Petrology, 34(2), 48-59.

HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). (1993). Regional geology of Heilongjiang Province (in Chinese). Geological Publishing House, Beijing, 736pp.

Heald, P., Foley, N. K. & Hayba, D. O. (1987). Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Economic Geology, 82(1), 1-26.

Hedenquist, J. W. & Lowenstern, J. B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(18), 519-527.

Hedenquist, J. W., Arribas, A. Jr. & Reynolds, T. J. (1998). Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4), 373-404.

Hedenquist, J. W., Arribas, R. A. & Gonzalez-Urien, E. (2000). Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 245-277.

Henderson, P. (1984). General geochemical properties and abundance of the rare earth elements. In: Henderson, P. (Ed.), Developments in Geochemistry. Elsevier, Amsterdam, pp. 1-32.

Hill, P. A. & Green, R. (1962). Thermoelectricity and resistivity of pyrite from Renison Bell and Mount Bischoff, Tasmania. Economic Geology, 57(4), 579-586.

IMBGMR (Inner Mongolian Bureau of Geology and Mineral Resources). (1991). Regional Geology of Inner Mongolian Automo (in Chinese with English summary). Geological Publishing House, Beijing, 725pp.

Jiang, S. H., Nie, F. J., Zhang, Y. & Hu, P. (2004). The latest advances in the research of epithermal deposits (in Chinese with English abstract). Earth Science Frontiers, 11(2), 401-411.

Ji, X. Z., Yang, L. Q. & Wang, Z. L. (2013). Thermoelectricity characteristics of pyrite from Xincheng gold deposit, Eastern Shangdong (in Chinese with English abstract). Geoscience, 27(1), 37-45.

Kantipuly, C. J., & Westland, A. D. (1988). Review of methods for the determination of lanthanides in geological samples. Talanta, 35(1), 1-13.

Kerrich, R., Goldfarb, R., Groves, D., Garwin, S. & Jia, Y. F. (2000). The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China Series D: Earth Sciences, 43(1), 1-68.

Klinkhammer, G. P., Elderfield, H., Edmond, J. M. & Mitra, A. (1994). Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58(23), 5105-5113.

Lian, Y. L., Hu, T. X., Shao, C. L., Yang, J. B. & Liang, C. L. (2010). Trace element geochemistry of the Gaosongshan gold deposit in Xunke County, Heilongjiang Province (in Chinese with English abstract). Geology and Resources, 19(4), 287-291.

Li, C. L., Li S. R., Luo, J. Y., Song, J. Y. & Zhang, J. Q. (2009). Thermoelectric coefficient, conductive type and significance of the pyrite from Yixingzhai Gold Deposit in Fanshi County, Shanxi Province, China (in Chinese with English abstract). Geoscience, 23(6), 1056-1063.

Lichte, F. E., Meier, A. L. & Crock, J.G. (1987). Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry. Analytical Chemistry, 59(8), 1150-1157.

Li, H. M., Shen, Y. C., Mao, J. W., Liu, T. B. & Zhu, H. P. (2004). Features of trace elements in pyrite, quartz and their fluid inclusions: an example from Jiaojia-type gold deposits, northwestern Jiaodong peninsula (in Chinese with English abstract). Chinese Journal of Geology, 39(3), 320-328.

Li, H. M., Shen, Y. C., Mao, J. W., Liu, T. B. & Zhu, H. P. (2003). REE features of quartz and pyrite and their fluid inclusions: an example of Jiaojia-type gold deposits, northwestern Jiaodong peninsula (in Chinese with English abstract). Acta Petrologica Sinica, 19(2), 267-274.

Lindgren, W. (1933). Mineral Deposits. 4th ed. McGraw-Hill, New York, 930pp.

Li, T. & Ni, S. B. (1990). Abundance of chemical elements in the earth and crust (in Chinese). Geological Publishing House, Beijing, 136pp.

Li, Y. H., Yan, Y. F., Tan, J. & Li, F. (2007). The application of rare earth elements in research of ore deposits (in Chinese with English abstract). Contributions to Geology and Mineral Resources Research, 22(4), 294-298.

Li, S. R., Chen, G. Y., Shao, W. & Sun, D. S. (1996). Genetic mineralogy of Rushan gold field, Jiaodong, China (in Chinese). Geological Publishing House, Beijing, 116pp.

Liu, R. P. (2015). Magma, fluids and gold mineralization of the porphyry-epithermal gold deposits in the Yichun area, Heilongjiang Province (in Chinese with English abstract). Ph.D. Thesis, China University of Geosciences (Beijing), China.

Liu, X. S. (1995). Current status and prospect for the determination of rare earth elements by inductively coupled plasma mass spectrometry (in Chinese with English abstract). Chinese Journal of Analytical Chemistry, 23(10), 1218-1224.

Loftus-Hills, G. & Solomon, M. (1967). Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Mineralium Deposita, 2(3), 228-242.

Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25-41.

Lv, P. R. (2012). Geochemistry of primary halos and evaluation of deep mineralization in the Gaosongshan gold deposit (in Chinese). Master’s Thesis, China University of Geosciences (Beijing), China.

Mao, G. Z., Hua, R. M., Gao, J. F., Zhao, K. D., Long, G. M., Lu, H. J. & Yao, J. M. (2006). REE composition and trace element features of gold-bearing pyrite in Jinshan gold deposit, Jiangxi Province (in Chinese with English abstract). Mineral Deposits, 25(4), 412-426.

Michard, A. & Albarède, F. (1986). The REE content of some hydrothermal fluids. Chemical Geology, 55(1), 51-60.

Monecke, T., Kempe, U. & Götze, J. (2002). Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth and Planetary Science Letters, 202(3), 709-724.

Oreskes, N. & Einaudi, M. T. (1990). Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag Deposit, Roxby Downs, South Australia. Economic Geology, 85(1), 1-28.

Ouyang, H. G., Mao, J. W., Santosh, M., Zhou, J., Zhou, Z. H., Wu, Y. & Hou, L. (2013). Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: perspectives from spatio-temporal distribution patterns of ore deposits. Journal of Asian Earth Science, 78, 222-236.

Qi, J. P., Chen, Y. J. & Pirajno, F. (2005). Geological characteristics and tectonic setting of the epithermal deposits in northeast China (in Chinese with English abstract). Journal of Mineralogy and Petrology, 25(2), 47-59.

Sengör, A. M. C., Natal’in, B. A. & Burtman, V. S. (1993). Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435), 299-307.

Shao, J. L. (1988). Gold Prospecting Mineralogy (in Chinese). China University of Geosciences Press, Wuhan, 163pp.

Shao, W., Chen, G. Y. & Sun, D. S. (1990). Method of investigating thermoelectricity of pyrite and its application to pyrites from gold deposits in Jiaodong region (in Chinese with English abstract). Geoscience, 4(1), 46–57.

Sillitoe, R. H. (2008). Major gold deposits and belts of the North and South American Cordillera: distribution, tectonomagmatic settings, and metallogenic considerations. Economic Geology, 103(4), 663-687.

Su, W. C., Qi, L., Hu, R. Z. & Zhang, G. P. (1998). Determination of the rare earth elements in fluid inclusions by ICP-MS (in Chinese). Chinese Science Bulletin, 43(10), 1094-1098.

Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.

Wang, J. L., Gu, X. X., Zhang, Y. M., Liu, R. P. & Zheng, L. (2014). Petrogenesis and tectonic implications of volcanic rocks in the Gaosongshan gold deposit, Heilongjiang Province (in Chinese with English abstract). Bulletin of Mineralogy, Petrology and Geochemistry, 33(5), 561-571, 597.

Wang, Y. B., Zeng, Q. D., Zhou, L. L., Chu, S. X. & Guo, Y. P. (2016). The sources of ore-forming material in the low-sulfidation epithermal Wulaga gold deposit, NE China: Constraints from S, Pb isotopes and REE pattern. Ore Geology Reviews, 76, 140-151.

White, N. C. & Hedenquist, J. W. (1990). Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36(1), 445-474.

White, N. C. & Hedenquist, J. W. (1995). Epithermal gold deposits: Styles, characteristics and exploration. Society of Economic Geologists Newsletter, 23(1), 9-13.

Wilde, S. A., Wu, F. Y., Zhao, G. C. (2010). The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society, 388(1), 117-137.

Wu, F. Y., Jahn, B. M., Wilde, S. & Sun, D. Y. (2000). Phanerozoic Crustal Growth: U–Pb and Sr–Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1), 89-113.

Wu, F. Y., Sun, D. Y., Ge, W. C., Zhang, Y. B., Grant, M. L., Wilde, S. A. & Jahn, B. M. (2011). Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1), 1-30.

Xue, J. L., Li, S. R., Sun, W. Y., Zhang, Y. Q. & Zhang, X. (2014). Characteristics of the genetic mineralogy of pyrite and its significance for prospecting in the Denggezhuang gold deposit, Jiaodong Peninsula, China. Science China Earth Sciences, 57(4), 644-661.

Yan, Y. T., Li, S. R., Jia, B. J., Zhang, N., Jiang, L. & Yan, L. N. (2012). Composition typomorphic characteristics of pyrite in various genetic type gold deposits. Advanced Materials Research, 463-464, 25-29.

Yaxley, G. M., Green, D. H. & Kamenetsky, V. (1998). Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11), 1917-1930.

Ying, J. F., Zhou, X, H., Li, S. R. & Sun, D. S. (2001). Genetic mineralogy of pyrite from Jindoushan gold deposit, Yantai, Shandong Province. Chinese Journal of Geochemistry, 20(3), 219-225.

Yuan, W. M., Mo, X. X., Yu, X. H. & Luo, Z. H. (1998). Reflections of gold mineralization from quartz in the Baijingou gold deposit, Eastern Kunlun Mountains (in Chinese with English abstract). Bulletin of Mineralogy, Petrology and Geochemistry, 17, 237-241.

Zeng, Q. D., Liu, J. M., Chu, S. X., Wang, Y. B., Sun, Y., Duan, X. X. & Zhou, L. L. (2012). Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristics and tectonic setting. International Geology Review, 54(16), 1843-1869.

Zhai, D. G., Liu, J. J., Han, S. Y., Wang, J. P., Zhang, H. Y., Liu, Z. J, Yang, L. B., Zhang, H. F. & Lv, J. (2013). Typomorphic characteristics of pyrite and processes of changes and preservation of the Sandaowanzi Telluride-Gold Deposit in Heilongjiang Province (in Chinese with English abstract). Acta Geologica Sinica, 87(1), 81-90.

Zhang, Z. C., Mao, J. W., Wang, Y. B., Pirajno, F., Liu, J. L. & Zhao, Z. D. (2010). Geochemistry and geochronology of the volcanic rocks associated with the Dong'an Adularia–Sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiang Province, NE China: Constraints On the Metallogenesis. Ore Geology Reviews, 37(3), 158-174.

Zhao, H. D. (1990). A study on the pyroelectricity of pyrite and its application in gold prospecting (in Chinese with English abstract). Acta Mineralogica Sinica, 10(3), 278-284.

Zhao, Z. H. (1997). Principle of trace element geochemistry (in Chinese). Science Press, Beijing, 238pp.

Zheng, L., Gu, X. X., Zhang, Y. M. & Liu, R. P. (2013). Isotopic geochemistry and its implication to the genesis of Gaosongshan epithermal gold deposit in Heilongjiang Province, China (in Chinese with English abstract). Acta Mineralogica Sinica, 33(1), 101-109.

Zheng, L., Gu, X. X., Zhang, Y. M., Liu, R. P., Geng, H. Q., Wang, Y. Z., Zhao, H. H. & Li, Y. J. (2015). Element mobilization, mass-change quantification and formation mechanism of wall rock alteration in the Gaosongshan epithermal gold deposit, Heilongjiang Province, China (in Chinese with English abstract). Geochimica, 44(1), 87-101.

Zheng, L., Gu, X. X., Zhang, Y. M., Liu, R. P., Wang, J. L., Wang, Y. Z. & Zhao, H. H. (2014). Geological-geochemical characteristics and genesis of the Gaosongshan Gold Deposit in Heilongjiang Province, China (in Chinese with English abstract). Bulletin of Mineralogy, Petrology and Geochemistry, 33(5), 733-741.

Zhou, J. B., Wilde, S. A., Zhang, X. Z., Zhao, G. C., Zheng, C. Q., Wang, Y. J. & Zhang, X. H. (2009). The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3), 230-246.

Zhou, J. B., Wilde, S. A., Zhao, G. C., Zhang, X. Z., Zheng, C. Q., Wang, H. & Zeng, W. S. (2010). Pan-African Metamorphic and Magmatic Rocks of the Khanka Massif, NE China: further Evidence Regarding Their Affinity. Geological Magazine, 147(5), 737-749.

Zhou, T. H., Goldfarb, R. J. & Phillips, N. G. (2002). Tectonics and distribution of gold deposits in China-an overview. Mineralium Deposita, 37(3-4), 249-282.

How to Cite

APA

Geng, H., Gu, X. and Zhang, Y. (2018). Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China. Earth Sciences Research Journal, 22(4), 301–318. https://doi.org/10.15446/esrj.v22n4.57512

ACM

[1]
Geng, H., Gu, X. and Zhang, Y. 2018. Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China. Earth Sciences Research Journal. 22, 4 (Oct. 2018), 301–318. DOI:https://doi.org/10.15446/esrj.v22n4.57512.

ACS

(1)
Geng, H.; Gu, X.; Zhang, Y. Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China. Earth sci. res. j. 2018, 22, 301-318.

ABNT

GENG, H.; GU, X.; ZHANG, Y. Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China. Earth Sciences Research Journal, [S. l.], v. 22, n. 4, p. 301–318, 2018. DOI: 10.15446/esrj.v22n4.57512. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/57512. Acesso em: 4 aug. 2024.

Chicago

Geng, Huiqing, Xuexiang Gu, and Yongmei Zhang. 2018. “Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China”. Earth Sciences Research Journal 22 (4):301-18. https://doi.org/10.15446/esrj.v22n4.57512.

Harvard

Geng, H., Gu, X. and Zhang, Y. (2018) “Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China”, Earth Sciences Research Journal, 22(4), pp. 301–318. doi: 10.15446/esrj.v22n4.57512.

IEEE

[1]
H. Geng, X. Gu, and Y. Zhang, “Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China”, Earth sci. res. j., vol. 22, no. 4, pp. 301–318, Oct. 2018.

MLA

Geng, H., X. Gu, and Y. Zhang. “Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China”. Earth Sciences Research Journal, vol. 22, no. 4, Oct. 2018, pp. 301-18, doi:10.15446/esrj.v22n4.57512.

Turabian

Geng, Huiqing, Xuexiang Gu, and Yongmei Zhang. “Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China”. Earth Sciences Research Journal 22, no. 4 (October 1, 2018): 301–318. Accessed August 4, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/57512.

Vancouver

1.
Geng H, Gu X, Zhang Y. Characteristics of genetic mineralogy of pyrite and quartz and their indicating significance in the Gaosongshan Gold Deposit, Heilongjiang Province, NE China. Earth sci. res. j. [Internet]. 2018 Oct. 1 [cited 2024 Aug. 4];22(4):301-18. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/57512

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Rania Ben Aissa, Wiem Ben Aissa, Abdessalem Ben Haj Amara, Lassaad Ben Aissa, Saïd Tlig. (2021). The trace and rare earth element contributions to the understanding of Chouichia iron-copper deposits in Northern Tunisia: metal sources interrelated with magmatism and metamorphism. Arabian Journal of Geosciences, 14(9) https://doi.org/10.1007/s12517-021-07095-2.

2. Zhonghai Zhao, Xiang Zhao, Yechang Yin, Shanshan Liang, Jun Chen, Chenglu Li, Jiazheng Zhou. (2023). Genesis of the Yidonglinchang gold deposit, Lesser Xing’an Range, China: Insights from fluid inclusions, H-O-S-Pb isotopes, and Sm-Nd and U-Pb geochronology. Ore Geology Reviews, 163, p.105803. https://doi.org/10.1016/j.oregeorev.2023.105803.

Dimensions

PlumX

Article abstract page views

478

Downloads

Download data is not yet available.