Published

2018-04-01

The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau

Modelo para el proceso de dilución del flujo de escombros originados por deslizamientos de tierra - Caso del río Guanba, en el sureste del altiplano tibetano

DOI:

https://doi.org/10.15446/esrj.v22n2.68177

Keywords:

Debris flows, Dilution characteristic and process, Evaluation model, Guanba River, Southeastern Tibetan Plateau (en)
flujo de escombros, procesos y características de dilución, modelo de evaluación, río Guanba, sureste del altiplano tibetano (es)

Downloads

Authors

  • Jun Li Sichuan University of Science & Engineering School of Civil Engineering
  • Ningsheng Chen Key Lab of Mountain hazards and Land surface processes, Chinese Academy of Sciences

Understanding and modeling the downstream dilution process of a landslide triggered debris flow is the foundation for recognizing the boundary condition and dilution mechanism of this type of debris flow, and this serves as the theoretical basis for the categorized control of viscous debris flows, diluted debris flows, hyperconcentration flows and flash floods in a drainage basin. In this study, taking as an example a typical debris flow that occurred in the Guanba River on Tibet’s southeastern plateau on July 6th, 1998, empirical models are used to calculate the density, water flow discharge, debris flow discharge, average depth of loose materials and channel gradient at 11 cross-sections upstream to downstream in the debris flow. On this basis, the dilution characteristics and debris flow dilution process are analyzed in this study. According to the correlation between the debris flow density and the water-soil ratio and channel gradient, we have established the density evaluation model for the debris flow dilution process, which can predict the dilution process of a landslide triggered debris flow. The study results include the following four aspects: (1) The key factors in the dilution process of landslide triggered debris flows are the water flow discharge, average depth of loose materials and channel gradient. (2) The debris flow dilution characteristics in the Guanba River in 1998 include the occurrence of the debris flow dilution process after a significant increase in the water-soil ratio; an increase in the proportion of fine particles after dilution of the debris flow; and the size distribution of grain is “narrowed.” (3) In accordance with the density and dilution characteristics, the debris flow dilution process in the Guanba River can be divided into the upstream viscous debris flow section, midstream and downstream transitional debris flow section and downstream diluted debris flow section. (4) The density evaluation model for the debris flow dilution process is expressed by the Lorentz equation, and this model can reflect the debris flow dilution process such that the debris flow density will decrease gradually with an increase in the water-soil ratio and decrease in channel gradient. The density evaluation model for the debris flow dilution process has been verified by three debris flow cases, which include Gaoqiao Gully, Haizi Valley, and Aizi Valley

El entendimiento y modelado del proceso de dilución aguas abajo del flujo de escombros causado por deslizamientos de tierra es fundamental para el reconocimiento de las condiciones límite y el mecanismo de dilución de este tipo de flujos, además de ser útil como base teórica para el control categorizado de la viscosidad de los escombros, detritos diluidos, flujos hiperconcentrados e inundaciones súbitas en una cuenca de desagüe. En este estudio, al tomar como ejemplo un flujo de detritos típico en el río Guanba, en el sureste del altiplano tibetano, del 6 de julio de 1998, se utilizaron modelos empíricos para calcular la densidad, la descarga de agua, la descarga de detritos, la profundidad promedio de materiales sueltos y la gradiente del canal en once secciones cruzadas desde aguas arriba y hacia abajo. Con base en estos datos, se analizan las características de dilución y el proceso de dilución del flujo de escombros. De acuerdo con la correlación entre la densidad del flujo de escombros y el índice agua-suelo más el gradiente del canal, se estableció el modelo de evaluación de densidad para el proceso de dilución del flujo de escombross, el cual puede predecir el proceso de dilución de un flujo causado por un deslizamiento de tierra. Los resultados del estudio incluyen los siguientes cuatro aspectos: (1) Los factores clave en la dilución de flujos de escombross causados por deslizamientos de tierra son la descarga de agua, la profundidad promedio de los materiales sueltos, y la gradiente del canal. (2) Las características de dilución del flujo de detritos en el río Guanba en 1998 incluye la ocurrencia del proceso de dilución después de un incremento significativo en el índice agua-suelo, un incremento en la proporción de partículas finas después de la dilución de los detritos, mientras la distribución por tamaños del grano es "reducida". (3) De acuerdo con las características de densidad y dilución, el proceso de dilución de detritos en el río Guanba se puede dividir entre la viscosidad de los detritos aguas arriba, el flujo transicional de detritos en el centro de la corriente y aguas abajo, y la sección de detritos diluidos aguas abajo. (4) El modelo de evaluación de densidad para el proceso de dilución del flujo de detritos se expresa con la ecuación de Lorentz, y es este modelo el que puede reflejar el proceso de dilución de forma que el flujo de escombros disminuye gradualmente con el incremento del índice agua-suelo y el decrecimiento de la gradiente de canal. El modelo de evaluación de densidad para el proceso de dilución del flujo se verificó con tres casos de flujos, que incluyen el Gaoqiao Gully, el valle Haizi y el valle Aizi.

References

Chen, J., Chen, X., Li, Y. & Wang, F. (2015a). An experimental study of dilute debris flow characteristics in a drainage channel with an energy dissipation structure. Engineering Geology, 193, 224-230.

Chen, N. S. & Chen, R. (2002). Glacial and rainstorm debris-flow in peilong gully and possibility in its blocking main river (In Chinese). Journal of Mountain Science, 20(6), 738-742.

Chen, N. S., Yue, Z. Q., Cui, P. & Li, Z. L. (2007). A rational method for estimating maximum discharge of a landslide-induced debris flow: A case study from southwestern china. Geomorphology, 84(1-2), 44-58.

Chen, N. S., Hu, G. S., Qi, X. Y., Wang, Y. H. & Sun, L. (2015b). Analysis of grouting treatment in minute joint area of three gorges dam (In Chinese). Yangtze River, 46(10), 34-37.

Chen, N. S., Chen, M. L., Li, J., He, N., Deng, M. F., Javed, I. T. & Cai, M. (2015c). Effects of human activity on erosion, sedimentation and debris flow activity - A case study of the Qionghai lake watershed, Southeastern Tibetan Plateau, China. The Holocene, 25(6), 973-988.

Chen, N. S., Tanoli, J. I., Hu, G. S., Wang, F. N., Yang, C. L., Ding, H. T., He, N., & Wang, T. (2016). Outlining a stepwise, multi-parameter debris flow monitoring and warning system: an example of application in Aizi Valley, China. Journal of Mountain Science, 13(9), 1527-1543.

Dasgupta, P. (2003). Sediment gravity flow—the conceptual problems. Earth-Science Reviews, 62(3), 265-281.

Guo, X. J., Cui, P., Li, Y., Zou, Q., & Kong, Y. D. (2015). The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake. Landslides, 13(1), 1-13.

Guo, X. J., Cui, P., Li, Y., Fan, J. L., Yan, Y. & Ge, Y. G. (2016). Temporal differentiation of rainfall thresholds for debris flows in Wenchuan earthquake-affected areas. Environmental Earth Sciences, 75(2): 1-12.

Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M. & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3-4), 222-229.

Hallworth, M. A., Phillips, J. C., Huppert, H. E., & Sparks, R. S. J. (1993). Entrainment in turbulent gravity currents. Nature, 362(6423), 829-831.

Iverson, R. M., Reid, M. E. & LaHusen, R. G. (1997). Debris-flow mobilization from landslides 1. Annual Review of Earth and Planetary Sciences, 25(1), 85-138.

Kang, Z. C., Li, Z. F., Ma, A. N. & Luo, J. T. (2004). Debris flow study in China (In Chinese). Science press.

Lavigne, F. (2004). Rate of sediment yield following small-scale volcanic eruptions: A quantitative assessment at the Merapi and Semeru stratovolcanoes, Java, Indonesia. Earth Surface Processes and Landforms, 29(8), 1045-1058.

Pederson, C. A., Santi, P. M. & Pyles, D. R. (2015) Relating the compensational stacking of debris-flow fans to characteristics of their underlying stratigraphy: Implications for geologic hazard assessment and mitigation. Geomorphology, 248, 47-56.

Peng, J. B., Fan, Z. J., Wu, D., Zhuang, J. Q., Dai, F. C., Chen, W. W. & Zhao, C. (2015). Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China. Engineering Geology, 186, 79-90.

Pierson, T. C. & Scott, K. M. (1985). Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow. Water resources study, 21(10), 1511-1524.

Pierson, T. C. & Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. Reviews in Engineering Geology, 7, 1-12.

Pierson, T. C. (2005). Distinguishing between debris flows and floods from field evidence in small watersheds. US Geological Survey.

Pierson, T. C. (2005). Hyperconcentrated flow—transitional process between water flow and debris flow. Debris-flow hazards and related phenomena, Springer, pp 159-202.

Qu, Y. P., Tang, C., Liu, Y., Wang, J. L., & Chang, M. (2015). Survey and analysis of the“8.13”debris flows fan in Longchi Town of Dujiangyan City, Sichuan province. Journal of Hydraulic Engineering, 46(2), 197-207.

Shen, Y. M., Xu, Z. C. & Xu, H. J. (1984). Handbook of rainstorm and flood calculation in the middle and small watersheds of Sichuan Province (In Chinese). Chengdu: Sichuan Provincial Water Conservancy and electric power department.

Smith G. A (1991). Lahars: Volcano hydrologic-events and deposition in the debris flow—hyperconcentrated flow continuum. In: R.V. Fisher, & G.A. Smith (Eds.), Sedimentation in Volcanic Settings (59-70). SEPM Special Publication, 45.

Svendsen, J., Stollhofen, H., Krapf, C. B. & Stanistreet, I. G. (2003). Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology, 160(1-3), 7-31.

Tang, C., Zhu, J., Li, W. L., & Liang, J. T. (2009). Rainfall-triggered debris flows following the Wenchuan Earthquake. Bulletin of Engineering Geology & the Environment, 68(2), 187-194.

Wei, X. L., Chen, N. S., Cheng, Q. G., Na, H., Deng, M. F. & Iqbal, T. J. (2014). Long-term activity of earthquake-induced landslides: A case study from Qionghai Lake Basin, Southwest of China. Journal of Mountain Science, 11(3), 607-624.

Xu, F. G., Yang, X. G. & Zhou, J. W. (2014). An empirical approach for evaluation of the potential of debris flow occurrence in mountainous areas. Environmental Earth Sciences, 71(7), 2979-2988.

Yu, B. (2008). Study on the calculating density by the deposit of debris flows (In Chinese). Acta Sedimentologica Sinica, 26(5), 789-796.

Zhang, S. H. (2014). Study on development characteristics and perniciousness of Gaoqiao Gully debris flows in Hanqing section of Mianmao highway from Sichuan. Sichuan Jiaotong University. (In Chinese)

Zhou, B. F., Li, D. J., Luo, D. F., Lu, R. R. & Yang, Q. X. (1991). A guide for debris-flows hazard mitigation (In Chinese). Science Publisher, Beijing.

Zhou, W., Tang, C., Asch, T. W. J. V., & Chang, M. (2016). A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan Earthquake Area. Landslides, 13(5), 1243-1259.

How to Cite

APA

Li, J. and Chen, N. (2018). The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau. Earth Sciences Research Journal, 22(2), 103–111. https://doi.org/10.15446/esrj.v22n2.68177

ACM

[1]
Li, J. and Chen, N. 2018. The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau. Earth Sciences Research Journal. 22, 2 (Apr. 2018), 103–111. DOI:https://doi.org/10.15446/esrj.v22n2.68177.

ACS

(1)
Li, J.; Chen, N. The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau. Earth sci. res. j. 2018, 22, 103-111.

ABNT

LI, J.; CHEN, N. The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau. Earth Sciences Research Journal, [S. l.], v. 22, n. 2, p. 103–111, 2018. DOI: 10.15446/esrj.v22n2.68177. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/68177. Acesso em: 19 jan. 2025.

Chicago

Li, Jun, and Ningsheng Chen. 2018. “The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau”. Earth Sciences Research Journal 22 (2):103-11. https://doi.org/10.15446/esrj.v22n2.68177.

Harvard

Li, J. and Chen, N. (2018) “The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau”, Earth Sciences Research Journal, 22(2), pp. 103–111. doi: 10.15446/esrj.v22n2.68177.

IEEE

[1]
J. Li and N. Chen, “The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau”, Earth sci. res. j., vol. 22, no. 2, pp. 103–111, Apr. 2018.

MLA

Li, J., and N. Chen. “The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau”. Earth Sciences Research Journal, vol. 22, no. 2, Apr. 2018, pp. 103-11, doi:10.15446/esrj.v22n2.68177.

Turabian

Li, Jun, and Ningsheng Chen. “The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau”. Earth Sciences Research Journal 22, no. 2 (April 1, 2018): 103–111. Accessed January 19, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/68177.

Vancouver

1.
Li J, Chen N. The Model for Dilution Process of Landslide Triggered Debris Flow —A Case of Guanba River in Tibet Southeastern Plateau. Earth sci. res. j. [Internet]. 2018 Apr. 1 [cited 2025 Jan. 19];22(2):103-11. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/68177

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Taixin Peng, Ningsheng Chen, Guisheng Hu, Shufeng Tian, Zheng Han, Enlong Liu. (2021). New insights into the delayed initiation of a debris flow in southwest China. Natural Hazards, 108(3), p.2855. https://doi.org/10.1007/s11069-021-04803-9.

2. Paúl Carrión-Mero, Néstor Montalván-Burbano, Fernando Morante-Carballo, Adolfo Quesada-Román, Boris Apolo-Masache. (2021). Worldwide Research Trends in Landslide Science. International Journal of Environmental Research and Public Health, 18(18), p.9445. https://doi.org/10.3390/ijerph18189445.

3. Jun Li, Ningsheng Chen, Yuandi Zhao, Mei Liu, Weiyu Wang. (2020). A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency. Earth Sciences Research Journal, 24(1), p.71. https://doi.org/10.15446/esrj.v24n1.78094.

4. Taixin Peng, Ningsheng Chen, Guisheng Hu, Shufeng Tian, Huayong Ni, Ling Huang. (2024). New rulers for estimating the magnitude of catastrophic debris flows. Natural Hazards, https://doi.org/10.1007/s11069-024-06795-8.

Dimensions

PlumX

Article abstract page views

460

Downloads

Download data is not yet available.