Published
An experimental test for detecting effective reflector height with GPS SNR data
Ensayo experimental para detectar la altura de reflexión efectiva con información de la relación señal/ruido en GPS
DOI:
https://doi.org/10.15446/esrj.v26n1.87003Keywords:
GPS interferometric reflectometry (GPS-IR), Signal to noise ratio (SNR), Multipath theory, Effective reflector height (en)Interferometría y reflectometría de GPS; relación señal/ruido; teoría multitrayectos; altura de reflexión efectiva (es)
Downloads
This study aims to estimate effective reflector heights and height differences using the basic geometrical principle of multipath theory by controlling the signal quality for estimations. The geometry of the reflecting signal allows computing the effective reflector height, which is extracted from where the signal reflects on the ground and arrives at the GPS antenna phase center. To achieve that, an experimental case with two stations was conducted in the snow-free environment and GPS receivers were mounted on reflectors, which allowed to measure daily in-situ reflector heights and artificial decrement variations. The reflections from the roof surface were tracked with the first-Fresnel zones. To validate the estimated reflector heights in a controlled test environment, twelve different combinations within four simulated scenarios as a combination of decrement values have been implemented and accuracy analysis was performed. Here, a vertical shift procedure on reflectors was applied. Meanwhile, the vertical shift amount was tracked in each computation to determine which reflected signal could be able to use for assigning reflector height as effective. Comparisons of the estimated heights and in-situ measurements show congruency with ±1.2 cm to ±8 cm accuracy. The best overall accuracy of the model among the four scenarios is computed as ±2.2 cm. When the vertical shift decrements are considered, the RMSE values are estimated within ±2.92 cm to ±3.96 cm. Although the RMSEs of the differences show a good agreement with estimated reflector heights, it is found that some reflector height estimations are statistically insignificant.
Este estudio se enfoca en calcular la altura de reflexión efectiva y las diferencias de altura a través de principios geométricos de la teoría de multitrayectos al controlar la calidad de la señal para realizar los cálculos. La geometría de la señal reflejada permite computar la altura de reflexión efectiva, la cual se toma entre la señal que se refleja en el piso y la que llega a la antena GPS. Para lograr esto se realizó un ensayo experimental con dos estaciones en un ambiente sin nieve y con los receptores GPS instalados en los puntos de reflexión, lo que permite medir diariamente las alturas reflejadas in-situ y las variaciones en la reducción artificial. Las reflexiones tomadas en la superficie del techo se monitorizaron con las primeras zonas de Fresnel. Para validar las alturas de reflexión estimadas en un ambiente controlado se implementaron doce combinaciones en cuatro escenarios simulados como valores de reducción y se realizaron análisis de exactitud. En este punto, se aplicó un procedimiento de migración vertical en los puntos de reflexión. Además, la dimensión de la migración vertical se monitorizó en cada cómputo para determinar cual señal reflejada es efectiva para ser asignada como altura de reflexión. La comparación de las alturas estimadas y las medidas in-situ muestra congruencia con un rango de exactitud de ±1.2 cm a ±8. El mejor promedio de exactitud del modelo entre los cuatro escenarios se computó con un margen de ±2.2 cm. Cuando se considera la reducción en la migración vertical, los valores RMSE se estiman en el rango de ±2.92 cm a ±3.96 cm. A pesar de las diferencias de los valores RMSE muestran coincidencia con la altura de reflexión estimada se encontró que algunas estimaciones de alturas reflejadas son estadísticamente insignificantes.
References
Bilich, A. L., Slater, A.G. & Larson, K.M. (2011). Snow Depth with GPS: Case Study from Minnesota 2010-2011. AGU 2011 Fall Meeting.
Chen, Q., Won, D., & Akos, D. M. (2014). Snow depth sensing using the GPS L2C signal with a dipole antenna. EURASIP Journal on Advances in Signal Processing, 2014(1), 106. https://doi.org/10.1186/1687-6180-2014-106. DOI: https://doi.org/10.1186/1687-6180-2014-106
Chew, C., Small, E. E., & Larson, K. M. (2016). An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS solutions, 20(3), 525-537. https://doi.org/10.1007/s10291-015-0462-4. DOI: https://doi.org/10.1007/s10291-015-0462-4
Drosinos, E. C. (2016). GNSS signal reflections off sea ice, Master’s thesis in Wireless Photonics and Space Engineering, Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden.
Erdogan, B., Karlitepe, F., Ocalan, T., & Tunalioglu, N. (2018). Performance analysis of Real Time PPP for transit of Mercury. Measurement, 129, 358-367. https://doi.org/10.1016/j.measurement.2018.07.050. DOI: https://doi.org/10.1016/j.measurement.2018.07.050
Gao, Y. (2018). Precise GNSS Positioning for Mass-market Applications, FIG General Assembly, Embracing our smart world where the continents connect: Enhancing the geospatial maturity of societies, 6-11 May, Istanbul, Turkey.
Gutmann, E. D., Larson, K. M., Williams, M. W., Nievinski, F. G., & Zavorotny, V. (2012). Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado. Hydrological Processes, 26(19), 2951-2961. https://doi.org/10.1002/hyp.8329. DOI: https://doi.org/10.1002/hyp.8329
Hefty, J., & Gerhatova, L. U. (2014). Using GPS multipath for snow depth sensing-first experience with data from permanent stations in Slovakia. Acta Geodynamica et Geomaterialia, 11(1), 53-63. https://doi.org/10.13168/AGG.2013.0055. DOI: https://doi.org/10.13168/AGG.2013.0055
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media. https://doi.org/10.1007/978-3-211-73017-1 DOI: https://doi.org/10.1007/978-3-211-73017-1
Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: initial results. GPS solutions, 12(3), 173-177. https://doi.org/10.1007/s10291-007-0076-6. DOI: https://doi.org/10.1007/s10291-007-0076-6
Larson, K. M., Braun, J. J., Small, E. E., Zavorotny, V. U., Gutmann, E. D., & Bilich, A. L. (2009a). GPS multipath and its relation to near-surface soil moisture content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 91-99. https://doi.org/10.1109/JSTARS.2009.2033612. DOI: https://doi.org/10.1109/JSTARS.2009.2033612
Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M. W., & Nievinski, F. G. (2009b). Can we measure snow depth with GPS receivers? Geophysical Research Letters, 36(17). https://doi.org/10.1029/2009GL039430. DOI: https://doi.org/10.1029/2009GL039430
Larson, K. M., & Nievinski, F. G. (2013). GPS snow sensing: results from the EarthScope Plate Boundary Observatory. GPS solutions, 17(1), 41-52. https://doi.org/10.1007/s10291-012-0259-7. DOI: https://doi.org/10.1007/s10291-012-0259-7
Larson, K. M., & Small, E. E. (2016). Estimation of snow depth using L1 GPS signal-to-noise ratio data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4802-4808. https://doi.org/10.1109/JSTARS.2015.2508673. DOI: https://doi.org/10.1109/JSTARS.2015.2508673
Löfgren, J. S., Haas, R., & Scherneck, H. G. (2014). Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics, 80, 66-80. https://doi.org/10.1016/j.jog.2014.02.012. DOI: https://doi.org/10.1016/j.jog.2014.02.012
Martin-Neira, M. (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA journal, 17(4), 331-355.
McCreight, J. L., Small, E. E., & Larson, K. M. (2014). Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western US. Water Resources Research, 50(8), 6892-6909. https://doi.org/10.1002/2014WR015561. DOI: https://doi.org/10.1002/2014WR015561
Nievinski, F. G., & Larson, K. M. (2014a). Inverse modeling of GPS multipath for snow depth estimation—Part I: Formulation and simulations. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6555-6563. https://doi.org/10.1109/TGRS.2013.2297681. DOI: https://doi.org/10.1109/TGRS.2013.2297681
Nievinski, F. G., & Larson, K. M. (2014b). Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6564-6573. https://doi.org/10.1109/TGRS.2013.2297688. DOI: https://doi.org/10.1109/TGRS.2013.2297688
Ocalan, T., Erdogan, B., Tunalioglu, N. & Durdag, U.M. (2016). Accuracy Investigation of PPP Method Versus Relative Positioning Using Different Satellite Ephemerides Products Near/Under Forest Environment. Earth Sci. Res. J., 20(4):D1-D9. https://doi.org/10.15446/esrj.v20n4.59496 DOI: https://doi.org/10.15446/esrj.v20n4.59496
Ozeki, M., & Heki, K. (2012). GPS snow depth meter with geometry-free linear combinations of carrier phases. Journal of Geodesy, 86(3), 209-219. https://doi.org/10.1007/s00190-011-0511-x. DOI: https://doi.org/10.1007/s00190-011-0511-x
Qian, X., & Jin, S. (2016). Estimation of snow depth from GLONASS SNR and phase-based multipath reflectometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4817-4823. https://doi.org/10.1109/JSTARS.2016.2560763. DOI: https://doi.org/10.1109/JSTARS.2016.2560763
Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Baup, F., & Ha, C. (2015). Detection of soil moisture content changes by using a single geodetic antenna: The case of an agricultural plot. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2008-2011). https://doi.org/10.1109/IGARSS.2015.7326192. DOI: https://doi.org/10.1109/IGARSS.2015.7326192
Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Baup, F., Lestarquit, L., & Ha, M. C. (2016). Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4781-4794. https://doi.org/10.1109/JSTARS.2016.2537847. DOI: https://doi.org/10.1109/JSTARS.2016.2537847
Tabibi, S., Geremia-Nievinski, F., & van Dam, T. (2017). Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3773-3785. https://doi.org/10.1109/TGRS.2017.2679899. DOI: https://doi.org/10.1109/TGRS.2017.2679899
Wei, H., He, X., Feng, Y., Jin, S., & Shen, F. (2019). Snow Depth Estimation on Slopes Using GPS-Interferometric Reflectometry. Sensors, 19-4994. https://doi.org/10.3390/s19224994. DOI: https://doi.org/10.3390/s19224994
Wessel, P., & Smith, W.H.F. (1998). New improved version of Generic mapping tools released, EOS Trans. AGU 79 (47)579. DOI: https://doi.org/10.1029/98EO00426
Zhou, W., Liu, L., Huang, L., Yao, Y., Chen, J., & Li, S. (2019). A New GPS SNR-based Combination Approach for Land Surface Snow Depth Monitoring. Scientific reports, 9(1), 3814. https://doi.org/10.1038/s41598-019-40456-2. DOI: https://doi.org/10.1038/s41598-019-40456-2
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Naiquan Zheng, Hongzhou Chai. (2023). Preliminary inquiry on the linear relationship between the height of the station and the ground height error retrieved by GNSS-IR with low-cost smart electronic equipment. Measurement Science and Technology, 34(12), p.125115. https://doi.org/10.1088/1361-6501/acf2b6.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2022 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.