Publicado

2024-02-28

A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia

Contribución al estudio del origen de las mineralizaciones auríferas de Ginebra, en Colombia

DOI:

https://doi.org/10.15446/esrj.v27n4.102964

Palabras clave:

Fluid Inclusions, Microthermometry, Raman Spectroscopy, Late Cretaceous, Orogenic Gold (en)
Inclusiones Fluidas, Microtermometría, Espectroscopía Raman, Cretácico Tardío, Oro Orogénico (es)

Descargas

Autores/as

  • Bibiana P. Rodriguez-Ramos Universidad Nacional de Colombia
  • Juan Carlos Molano Mendoza Universidad Nacional de Colombia
  • Camilo E. Dorado Universidad Nacional de Colombia

Ginebra´s gold mineralization is hosted by the Ginebra Ophiolitic Massif and the Buga Batholith, in the western flank of the Central Cordillera of Colombia. Gold occurs as disseminations, quartz-carbonate stockwork veinlets and quartz lodes with a strong structural control and are composed by small amounts of sulfides, mostly pyrite, with galena, sphalerite and chalcopyrite in at least two different deposition events and related to strong sericite-chlorite-epidote haloes, indicative of near-neutral and reduced fluids. Petrography and Raman spectroscopy allowed to identify two main fluid inclusions assemblages primary to pseudo-secondary in origin, both of them aqueous and CO2-rich, with variable N2. Microthermometric analysis indicates the hydrothermal fluids associated with the gold were low saline (0.75-6.22 wt% NaCl equiv.) and presented a minimum trapping temperature ranging from 237.4 to 301.6°C. Petrography and microthermometric results suggest an isothermal fluid mixing and/or H2S loss as the main mechanisms related to gold bi-sulfide/thio-sulfide complexes destabilization and precipitation. Sulfur isotopes indicates a close to zero range (-8.2-+4.8‰), suggesting a restricted fluid circulation through the magmatic rocks of the Buga Batholith and the Ginebra Ophiolitic Massif. Besides, the oxygen and deuterium isotopes from hydrothermal sericite and chlorite accompanying to gold events, indicates a metamorphic origin for the hydrothermal fluids. 40Ar-39Ar dating of the hydrothermal alteration haloes, from El Retiro and La Esperanza, indicates a late Cretaceous-Paleocene age, between 67 and 65 Ma, contemporaneous with a regional strong dextral transpressive deformation related to subduction to obduction and exotic terrane accretion against the north-western part of the South American Plate. Although the hydrothermal fluid characteristics of the Ginebra Gold Disctrict are compatible with both the Intrusion-Related and Orogenic Gold deposit types, the metamorphic nature of the hydrothermal fluids and the tectonic regime at the time of mineralization event, allow us to propose they are compatible with an Orogenic Gold deposit.

Las mineralizaciones del Distrito Aurífero de Ginebra están emplazadas tanto en el Macizo Ofiolítico de Ginebra como en el Batolito de Buga, en el flanco occidental de la cordillera Central de Colombia. Corresponden a diseminaciones, stockwork de vetillas y vetas de cuarzo-carbonato, estas últimas con fuerte control estructural, bajas cantidades de sulfuros (>pirita-galena-esfalerita-calcopirita), al menos dos eventos de depósito de oro y desarrollo de halos de alteración fuerte (sericita-clorita-epidota). Análisis petrográficos y de espectroscopía Raman identificaron dos ensamblajes de inclusiones fluidas principales, primario y pseudo-secundario, ambos acuosos y ricos en CO2, con cantidades variables de N2. Los análisis microtermométricos indican fluidos hidrotermales con salinidad baja a moderada (0.75-6.22wt% NaCl equiv.) y temperatura mínima de entrampamiento entre 237.4 y 301.6°C. Asimismo, sugieren que un proceso de mezcla isotermal de fluidos y/o de pérdida de H2S fueron los mecanismos responsables de la desestabilización de los complejos bi-sulfurados/thio-sulfurados en los que se transportó el oro y produjeron su depósito. Isótopos de azufre (entre -8.2 y +4.8‰) sugieren una circulación restringida de los fluidos hidrotermales por las rocas del macizo y del batolito. Adicionalmente, isótopos de oxígeno y deuterio en sericita y clorita hidrotermal, que acompañan la mineralización, reflejan un origen metamórfico para estos fluidos. Dataciones 40Ar-39Ar en los halos de alteración de las estructuras de El Retiro y La Esperanza, indican una edad entre 65 y 67 Ma, contemporánea con una deformación regional transpresiva dextral, relacionada con subducción a obducción y acreción de terrenos exóticos contra la margen nor-occidental de la placa Sudamericana. Aunque las características de los fluidos hidrotermales de las mineralizaciones son compatibles tanto con depósitos de tipo “Intrusion-Related” y Oro Orogénico, su naturaleza metamórfica y el régimen tectónico existente al momento del evento mineralizante, permite proponer que son compatibles con un depósito de tipo Oro Orogénico más que un “Intrusion-Related”.

Referencias

Aspden, J., & McCourt, W. (1986). Mesozoic oceanic terrane in the central Andes of Colombia. Geology, 14, 415-418. https://doi.org/10.1130/0091-7613(1986)14<415:MOTITC>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(1986)14<415:MOTITC>2.0.CO;2

Bakker, R. J. (1997). Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers & Geosciences, 23(1), 1-18. https://doi.org/10.1016/S0098-3004(96)00073-8 DOI: https://doi.org/10.1016/S0098-3004(96)00073-8

Bakker, R. J., & Brown, P. E. (2003). Computer modelling in fluid inclusion research. In: I. M. Samson, A. J. Anderson, & D. D. Marshall (Eds.). Fluid Inclusions, Analysis and Interpretation. Mineralogical Association of Canada, 32, pp. 175-212.

Barrera-Cortes, M. & Molano, J. C. (2021). Characterization of hydrothermal events associated with the occurrence of copper molybdenum minerals in the El Chucho creek at Cerrito, Valle del Cauca-Colombia. Earth Sciences Research Journal, 25(1), 5-12. https://doi.org/10.15446/esrj.v25n1.79152 DOI: https://doi.org/10.15446/esrj.v25n1.79152

Brito, R., Molano, J., Rodrigues, J., Dorado, C., Rodríguez, B. P., & Duarte, P. (2010). U-Pb LA-ICPMS dating of the Buga Batholith and associated Porphyry dykes of the Ginebra Ofiolite–Westernmost Central Cordillera-Colombia. VII South American Symposium on Isotope Geology vol. 2, Brasilia, Brazil, pp. 252-256.

Brook, M. (1984). New Radiometric Age Data from S.W. Colombia. Informe 1959-4. Ingeominas, Cali.

Burke, E. A. (2001). Raman microspectrometry of fluid inclusions. Lithos, 55(1-4), 139-158. https://doi.org/10.1016/S0024-4937(00)00043-8 DOI: https://doi.org/10.1016/S0024-4937(00)00043-8

Burrows, D. R., Wood, P. C., & Spooner, E. T. (1986). Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits. Nature, 321(6073), 851-854. https://doi.org/10.1038/321851a0 DOI: https://doi.org/10.1038/321851a0

Bustamante, C., & Bustamante, A. (2019). Two Cretaceous subduction events in the Central Cordillera: Insights from the high P–low T metamorphism. In: Gómez, J., & Pinilla–Pachon, A. O. (Eds.). The Geology of Colombia. Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 485–498. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.14 DOI: https://doi.org/10.32685/pub.esp.36.2019.14

Czamanske, K., & Rye, R. (1974). Experimentally determined sulfur isotope fractionations between sphalerite and galena in the temperature range 600° to 275°C. Economic Geology, 69, 17-25. https://doi.org/10.2113/gsecongeo.69.1.17 DOI: https://doi.org/10.2113/gsecongeo.69.1.17

Cediel, F., Shaw, R., & Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. In: C. Bartolini, R. T. Buffler, and J. Blickwede (Eds.). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir 79, 815–848. DOI: https://doi.org/10.1306/M79877C37

Cervera, J., & Garcés, A. (2005). Estudio Metalográfico de las mineralizaciones auríferas en los sectores Cueva Loca y El Retiro (Departamento del Valle del Cauca), orientado al mejoramiento del proceso de beneficio. [Dissertation Universidad Nacional de Colombia, Departamento de Geociencias.] Bogotá.

Cline, J. S., & Bodnar, R. J. (1991). Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research: Solid Earth, 96(B5), 8113-8126. https://doi.org/10.1029/91JB00053 DOI: https://doi.org/10.1029/91JB00053

Diamond, L. W. (1990). Fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in Late-Alpine gold-quartz veins at Brusson, Val d’Ayas, NW Italian Alps. American Journal of Science, 290, 912-958. https://doi.org/10.2475/ajs.290.8.912 DOI: https://doi.org/10.2475/ajs.290.8.912

Duan, Z., Moller, N., & Weare, J. H. (1992). An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50 to 1000°C and 0 to 1000 bar. Geochimica et Cosmochimica Acta, 56(7), 2619–2631. http://dx.doi.org/10.1016/0016-7037(92)90348-M DOI: https://doi.org/10.1016/0016-7037(92)90348-M

Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20. https://doi.org/10.1016/j.gexplo.2011.09.009 DOI: https://doi.org/10.1016/j.gexplo.2011.09.009

Gebre-Mariam, M., Groves, D., McNaughton, N., Mikucki, E. & Vearncombe, J. (1993). Archaean Au-Ag mineralisation at Racetrack, near Kalgoorlie, Western Australia: a high crustal-level expression of the Archaean composite lodegold system. Mineralium Deposita, 28, 375–387. https://doi.org/10.1007/BF02431597 DOI: https://doi.org/10.1007/BF02431597

Goldfarb, R., Baker, T., Dubé, B., Groves, D., Hart, C., & Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., & Richards, J. P. (Eds.). 100th Anniversary Volume. Society of Economic Geologists, 407-457. https://doi.org/10.5382/AV100.14 DOI: https://doi.org/10.5382/AV100.14

Goldstein, R. H. (2003). Petrographic analysis of fluid inclusions. In: I. Samson, A. Anderson & D. Marshal (Eds.) Fluid inclusion analysis and interpretation. Short Course Series 32, Vancouver-British Columbia, p. 9-54.

González, H. I. (2010). Geoquímica, geocronología de las unidades litológicas asociadas al sistema de Fallas Cauca-Romeral, Sector Centro-Sur. Tomo 1. Proyecto Cordillera Occidental, Ingeominas. Colombia.

Groves, D. (1993). The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28, 366–374. https://doi.org/10.1007/BF02431596 DOI: https://doi.org/10.1007/BF02431596

Groves, D., Goldfarb, R., Gebre-Mariam, M., Hagemann, S., & Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5), 7-27. https://doi.org/10.1016/S0169-1368(97)00012-7 DOI: https://doi.org/10.1016/S0169-1368(97)00012-7

Groves, D., Goldfarb, R., Robert, F., & Hart, C. (2003). Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 98, 1-29. https://doi.org/10.2113/gsecongeo.98.1.1 DOI: https://doi.org/10.2113/gsecongeo.98.1.1

Hart, C. J. R. (2007). Reduced intrusion-related gold systems. In: Goodfellow, W. D. (Ed.). Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 95-112.

Hayashi, K., & Ohmoto, H. (1991). Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250–350°C. Geochimica et Cosmochimica Acta, 55(8), 2111-2126. https://doi.org/10.1016/0016-7037(91)90091-I DOI: https://doi.org/10.1016/0016-7037(91)90091-I

Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293-305.

Jia, Y., Li, X., & Kerrich, R. (2000). A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the Bendigo gold field, Central Victoria, Australia. Economic Geology, 95, 467- 494. https://doi.org/10.2113/gsecongeo.95.3.467 DOI: https://doi.org/10.2113/gsecongeo.95.3.467

Kajiwara, Y., & Krouse, H. R. (1971). Sulfur Isotope Partitioning in Metallic Sulfide Systems. Canadian Journal of Earth Sciences, 8(11), 1397–1408. https://doi.org/10.1139/e71-129 DOI: https://doi.org/10.1139/e71-129

Kerr, A., Marriner, G., Tarney, J., Nivia, A., Saunders, A., Thirwall, F., & Sinton, C. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677 DOI: https://doi.org/10.1093/petroj/38.6.677

Kerr, A. C., Tarney, J., Kempton, P. D., Spadea, P., Nivia, A., Marriner, G. F. & Duncan, R. A. (2002). Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean-Colombian oceanic plateau. Journal of Geophysical Research: Solid Earth, 107. https://doi.org/10.1029/2001JB000790 DOI: https://doi.org/10.1029/2001JB000790

Lang, J. R., Baker, T., Hart, C. J. R., & Mortensen, J. K. (2000). An exploration model for intrusion-related gold systems. Society of Economic Geologists Newsletter, 40, 6-15. https://doi.org/10.5382/SEGnews.2000-40.fea DOI: https://doi.org/10.5382/SEGnews.2000-40.fea

Leal-Mejía, H. (2011). Phanerozoic Gold Metallogeny in the Colombian Andes: A Tectono-Magmatic. [Ph. D. thesis. Universitat de Barcelona], Barcelona, Spain.

Leal-Mejía, H., Shaw, R. P., & I Draper, J. C. M. (2019). Spatial-Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono- Magmatic Evolution of the Colombian Andes. In: Cediel, F., & Shaw, R. (Eds.). Geology and Tectonics of Northwestern South America. Switzerland: Springer Nature, pp. 253-410. https://doi.org/10.1007/978-3-319-76132-9_5 DOI: https://doi.org/10.1007/978-3-319-76132-9_5

López, J. A., Leal-Mejía, H., Luengas, C. S., Velásquez, L. E., Celada, C. M., Sepúlveda, M. J., Prieto, D. A., Gómez, M., Hart, C. J. R. (2018). Mapa Metalogénico de Colombia. Bogotá: Servicio Geológico Colombiano.

Lowenstern, J. B. (2001). Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 36, 490–502. https://doi.org/10.1007/s001260100185 DOI: https://doi.org/10.1007/s001260100185

Manco, J. (2020). Geology, geochronology and geochemistry of the El Alacrán deposit, San Matías district, Córdoba-Colombia. [M.Sc. thesis: University of British Columbia.] Vancouver, Canada.

Mathieu, L. (2021). Intrusion-Associated Gold Systems and Multistage Metallogenic Processes in the Neoarchean Abitibi Greenstone Belt. Minerals, 11(3), 261. https://doi.org/10.3390/min11030261 DOI: https://doi.org/10.3390/min11030261

McCourt, W. J. (1984). The Geology of the Central Cordillera the Department of Valle Del Cauca, Quindio and (N.W.) Tolima (Sheets 243, 261, 262, 280, 300). Ingeominas, Cali.

McCourt, W. J., Aspden, J. A. & Brook, M. (1984). New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. Journal of the Geological Society, 141, 831–845. https://doi.org/10.1144/gsjgs.141.5.0831 DOI: https://doi.org/10.1144/gsjgs.141.5.0831

McCourt, W. J., Millar, D., & Espinosa, A. (1985). Geología de la Plancha 280–Palmira. Escala 1:100.000. Ingeominas. Bogotá.

Molano, J. C., Londoño, J. I., Mosquera, G., Bacca, H., Cañón, Y., Londoño, S., Mojica, J., Pérez, O., Castro, A., & López, P. (2000). Caracterización Mineralúrgica del Distrito Aurífero de Ginebra. Proyecto de Investigación en Procesamiento de Minerales. Ingeominas, Cali.

Nivia, A. (2001). Memoria Explicativa del Mapa Geológico del Departamento del Valle del Cauca. Ingeominas, Bogotá.

Nivia, A., Tarazona, C., Paz, D., Ríos, J., Melo, A., Patiño, H., Torres, E., & Montoya, A. (2019). Geología de las planchas 261 y 280 en los sectores de afloramiento del Macizo Ofiolítico de Ginebra y el Batolito de Buga. Servicio Geológico Colombiano, 530

Ossa, C. (2006). Petrogénesis de las rocas del Macizo Ofiolítico de Ginebra entre las veredas la Honda (Ginebra) y el Diamante (Buga) en el departamento del Valle del Cauca. [Dissertation Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias]. Bogotá.

Peng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64. DOI: https://doi.org/10.1021/i160057a011

Phillips, G. N., & Groves, D. I. (1983). The nature of Archaean gold-bearing fluids as deduced from gold deposits of Western Australia. Journal of the Geological Society of Australia, 30, 25–39. https://doi.org/10.1080/00167618308729234 DOI: https://doi.org/10.1080/00167618308729234

Powell, R., Will, T., & Phillips, G. (1991). Metamorphism in Archaean greenstone belts: Calculated fluid compositions and implications for gold mineralization. Journal of Metamorphic Geology, 9(2), 141-150. https://doi.org/10.1111/j.1525-1314.1991.tb00510.x DOI: https://doi.org/10.1111/j.1525-1314.1991.tb00510.x

Ramboz, C., Pichavant, M., & Weisbrod, A. (1982). Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(1-2), 29-48. https://doi.org/10.1016/0009-2541(82)90065-1 DOI: https://doi.org/10.1016/0009-2541(82)90065-1

Restrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11, 189-193. https://doi.org/10.18814/epiiugs/1988/v11i3/006 DOI: https://doi.org/10.18814/epiiugs/1988/v11i3/006

Ridley, J., Mikucki, E., & Groves, D. (1996). Archean lode-gold deposits: Fluid flow and chemical evolution in vertically extensive hydrothermal systems. Ore Geology Reviews, 10(3-6), 279-293. https://doi.org/10.1016/0169-1368(95)00027-5 DOI: https://doi.org/10.1016/0169-1368(95)00027-5

Robb, L. J. (2005). Introduction to ore-forming processes. Blackwell Science Ltd., 373 pp.

Rodríguez-Ramos, B. (2012). Estudio metalogenético de las mineralizaciones auríferas del área de Ginebra y zonas aledañas, Valle del Cauca. [Dissertation Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias.] Bogotá.

E Roedder, A., & Bodnar, R. J. (2003). Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth & Planetary Science, 8, 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403 DOI: https://doi.org/10.1146/annurev.ea.08.050180.001403

Roedder, E. (1984). Fluid inclusions. Mineralogical Society of America, 12, 644 pp. DOI: https://doi.org/10.1515/9781501508271

Sakai, H. (1968). Isotopic properties of sulfur compounds in hydrothermal processes. Geochemical Journal, 2(1), 29-49. https://doi.org/10.2343/geochemj.2.29 DOI: https://doi.org/10.2343/geochemj.2.29

Seward, T. (1973). Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta, 37(3), 379-399. https://doi.org/10.1016/0016-7037(73)90207-X DOI: https://doi.org/10.1016/0016-7037(73)90207-X

Seward, T. M. (1984). The transport and deposition of gold in hydrothermal systems. In: R. P. Foster (Ed.) Gold’82: The geology, geochemistry and genesis of gold deposits, 165-181.

Shenberger, D., & Barnes, H. (1989). Solubility of gold in aqueous sulfide solutions from 150 to 350°C. Geochimica et Cosmochimica Acta, 53(2), 269-278. https://doi.org/10.1016/0016-7037(89)90379-7 DOI: https://doi.org/10.1016/0016-7037(89)90379-7

Sheppard, M. F. (1986). Characterization and isotopic variations in natural waters. Reviews in Mineralogy, 16, 165-183. DOI: https://doi.org/10.1515/9781501508936-011

Sillitoe, R. H., & Thompson, J. F. (1998). Intrusion–Related Vein Gold Deposits: Types, Tectono-Magmatic Settings and Difficulties of Distinction from Orogenic Gold Deposits. Resource Geology, 48(4), 237-250. https://doi.org/10.1111/j.1751-3928.1998.tb00021.x DOI: https://doi.org/10.1111/j.1751-3928.1998.tb00021.x

Stefánsson, A., & Seward, T. (2004). Gold(I) complexing in aqueous sulphide solutions to 500°C at 500 bar. Geochimica et Cosmochimica Acta, 68(20), 4121-4143. https://doi.org/10.1016/j.gca.2004.04.006 DOI: https://doi.org/10.1016/j.gca.2004.04.006

Sterner, S., & Bodnar, R. J. (1984). Synthetic fluid inclusions in natural quartz I. Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochimica Acta, 48(12), 2659-2668. https://doi.org/10.1016/0016-7037(84)90314-4 DOI: https://doi.org/10.1016/0016-7037(84)90314-4

Sun, W., Binns, R., Fan, A., Kamenetsky, V., Wysoczanski, R., Wei, G., Hu, Y., & Arculus, R. (2007). Chlorine in submarine volcanic glasses from the eastern manus basin. Geochimica et Cosmochimica Acta, 71(6), 1542-1552. https://doi.org/10.1016/j.gca.2006.12.003 DOI: https://doi.org/10.1016/j.gca.2006.12.003

Suzuoki, T., & Epstein, S. (1976). Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta, 40(10), 1229-1240. https://doi.org/10.1016/0016-7037(76)90158-7 DOI: https://doi.org/10.1016/0016-7037(76)90158-7

Thompson, J., Sillitoe, R., Baker, T., Lang, J., & Mortensen, J. (1999). Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34, 323–334. https://doi.org/10.1007/s001260050207 DOI: https://doi.org/10.1007/s001260050207

Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003 DOI: https://doi.org/10.1016/j.lithos.2011.05.003

Wilkinson, J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4), 229-272. https://doi.org/10.1016/S0024-4937(00)00047-5 DOI: https://doi.org/10.1016/S0024-4937(00)00047-5

Zheng, Y. (1993). Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120(3-4), 247-263. https://doi.org/10.1016/0012-821X(93)90243-3 DOI: https://doi.org/10.1016/0012-821X(93)90243-3

Cómo citar

APA

Rodriguez-Ramos, B. P., Molano Mendoza, J. C. y Dorado, C. E. (2024). A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia. Earth Sciences Research Journal, 27(4), 327–341. https://doi.org/10.15446/esrj.v27n4.102964

ACM

[1]
Rodriguez-Ramos, B.P., Molano Mendoza, J.C. y Dorado, C.E. 2024. A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia. Earth Sciences Research Journal. 27, 4 (feb. 2024), 327–341. DOI:https://doi.org/10.15446/esrj.v27n4.102964.

ACS

(1)
Rodriguez-Ramos, B. P.; Molano Mendoza, J. C.; Dorado, C. E. A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia. Earth sci. res. j. 2024, 27, 327-341.

ABNT

RODRIGUEZ-RAMOS, B. P.; MOLANO MENDOZA, J. C.; DORADO, C. E. A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia. Earth Sciences Research Journal, [S. l.], v. 27, n. 4, p. 327–341, 2024. DOI: 10.15446/esrj.v27n4.102964. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/102964. Acesso em: 16 ago. 2024.

Chicago

Rodriguez-Ramos, Bibiana P., Juan Carlos Molano Mendoza, y Camilo E. Dorado. 2024. «A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia». Earth Sciences Research Journal 27 (4):327-41. https://doi.org/10.15446/esrj.v27n4.102964.

Harvard

Rodriguez-Ramos, B. P., Molano Mendoza, J. C. y Dorado, C. E. (2024) «A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia», Earth Sciences Research Journal, 27(4), pp. 327–341. doi: 10.15446/esrj.v27n4.102964.

IEEE

[1]
B. P. Rodriguez-Ramos, J. C. Molano Mendoza, y C. E. Dorado, «A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia», Earth sci. res. j., vol. 27, n.º 4, pp. 327–341, feb. 2024.

MLA

Rodriguez-Ramos, B. P., J. C. Molano Mendoza, y C. E. Dorado. «A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia». Earth Sciences Research Journal, vol. 27, n.º 4, febrero de 2024, pp. 327-41, doi:10.15446/esrj.v27n4.102964.

Turabian

Rodriguez-Ramos, Bibiana P., Juan Carlos Molano Mendoza, y Camilo E. Dorado. «A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia». Earth Sciences Research Journal 27, no. 4 (febrero 28, 2024): 327–341. Accedido agosto 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/102964.

Vancouver

1.
Rodriguez-Ramos BP, Molano Mendoza JC, Dorado CE. A contribution to the understanding of the origin of the Ginebra Gold District mineralizations, Colombia. Earth sci. res. j. [Internet]. 28 de febrero de 2024 [citado 16 de agosto de 2024];27(4):327-41. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/102964

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

179

Descargas

Los datos de descargas todavía no están disponibles.