Publicado

2017-07-01

Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function

Velocidad media y modelo de perfil de concentración de sedimentos suspendidos de flujo turbulentos de cizalla turbulento con funciones de densidad de probabilidad

DOI:

https://doi.org/10.15446/esrj.v21n3.65172

Palabras clave:

Exponential probability density, Mean velocity profile, Concentration profile, River flow, Coastal current (en)
densidad de probabilidad exponencial, perfil de velocidad media, perfil de concentración, corriente de río, corriente costera. (es)

Descargas

Autores/as

  • Guanglin Wu College of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
  • Liangsheng Zhu College of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
  • Fangcheng Li College of Ocean Engineering, Guangdong Ocean University, Zhanjiang 524088, China

This work purposes a general mean velocity and a suspended sediment concentration (SSC) model to express distribution at every point of the cross section of turbulent shear flow by using a probability density function method. The probability density function method was used to describe the velocity and concentration profiles interacted on directly by fluid particles in the turbulent shear flow to solve turbulent flow and avoid different dynamical mechanics. The velocity profile model was obtained by solving for the profile integral with the product of the laminar velocity and probability density, through adopting an exponential probability density function to express probability distribution of velocity alteration of a fluid particle in turbulent shear flow. An SSC profile model was also created following a method similar to the above and based on the Schmidt diffusion equation. Different velocity and SSC profiles were created while changing the parameters of the models. The models were verified by comparing the calculated results with traditional models. It was shown that the probability density function model was superior to log-law in predicting stream-wise velocity profiles in coastal currents, and the probability density function SSC profile model was superior to the Rouse equation for predicting average SSC profiles in rivers and estuaries. Outlooks for precision investigation are stated at the end of this article.

Este trabajo propone un modelo de velocidad media general y un modelo de concentración de sedimentos suspendidos (CSS) para expresar la distribución en cada punto de la sección de cruce del flujo turbulento de cizalla mediante el uso de funciones de densidad de probabilidad (PDF).. El método de funciones de densidad de probabilidad se usó para describir los perfiles velocidad y concentración que interactuaron directamente con partículas fluidas en el flujo de desprendimiento turbulento para resolver el flujo turbulento y evitar diferentes mecánicas dinámicas. El modelo del perfil de velocidad se obtuvo resolviendo el perfil integral con el producto de la velocidad laminar y la densidad de probabilidad, mediante la adopción de una función de desidad exponencial  para expresar la probabilidad de distribución de la velocidad de alteración de la partícula de un fluido en un flujo de desprendimiento turbulento. También se creó un modelo de perfil CSS siguiendo un método similar al anterior y basado en la ecuación de difusión Schmidt. Se crearon diferentes perfiles de velocidad y CSS durante el cambio de parámetros de los modelos. Los modelos se verificaron comparando los resultados calculados con los modelos tradicionales. Se demostró que el PDF era superior a la ley logarítmica en la predicción de los perfiles de velocidad en corrientes costeras, y que la probabilidad del modelo del perfil de función de densidad SSC fue superior a la ecuación Rouse para predecir perfiles SSC promedio en ríos y estuarios. Las perspectivas para la investigación de precisión se indican al final de este artículo.

Referencias

Afzal, N., Seena, A., & Bushra, A. (2007). Power law velocity profile in fully developed turbulent pipe and channel flows. Journal of Hydraulic Engineering, 133(9), 1080-1086.

Anwar, H. O. (1996). Velocity profile in shallow coastal water. Journal of Hydraulic Engineering, 122 (4), 220-223.

Anwar, H. O. (1998). Spread of Surface Plume in Homogeneous and Stratified Coastal Waters. Journal of Hydraulic Engineering, 124 (5), 465-473.

Boussinesq, J. (1877). Essai sur la Théorie des Eaux Courantes. Académie des Sciences. (Essay on the Theory of Water Flow. In French). French Academy of Sciences 23(1), 666-680.

Bucci, G., Fiorucci, E., Russo, S. A., & Nucci, C. D. (2008). Analysis of turbulent flow speed profiles in pressure pipes using the dissimilar similitude technique applied to an electrolytic tank: implementation and experimental characterization. IEEE Transactions on Instrumentation and Measurement, 57(8), 1547-1553.

Buschmann, M. H. & Gad-el-Hak, M. (2007). Recent developments in scaling of wall-bounded flows. Progress in Aerospace Sciences, 42(5), 419-467.

Buschmann, M. H., Indinger, T., & Gad-el-Hak, M. (2009). Near-wall behavior of turbulent wall-bounded flows. International Journal of Heat and Fluid Flow, 30 (5), 993-1006.

De Serio, F., & Mossa, M. (2010). Velocity profiles of sea currents. In: Proceedings of the 6th International Symposium on Environmental Hydraulics, Athens, Greece, 23-25 June 2010, CRC Press, 451-456.

De Serio, F. & Mossa, M. (2014). Stream-wise velocity profiles in coastal currents. Environmental Fluid Mechanics, 14(4), 895-918.

Deissler, R. G. (1954). Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt. National Advisory Committee for Astronauts, Washington D.C., USA.

Kempe, A., Schlamp, S., & Rösgen, T. (2007). Non-contact boundary layer profiler using low-coherence self-referencing velocimetry. Experiments in Fluids, 43(2-3), 453-461.

Khan, M. Z., Rahman, Z. U., Khattak, Z., & Ishfaque, M. (2017). Microfacies and Diagenetic Analysis of Chorgali Carbonates, Chorgali Pass, Khair-E-Murat Range: Implications for Hydrocarbon Reservoir Characterization. Pakistan Journal of Geology, 1(1): 18-23.

Lin, C. S., Moulton, R. W., & Putnam, G. L. (1953). Mass transfer between solid wall and fluid streams, mechanism and eddy distribution relationships in turbulent flow. Industrial and Engineering Chemistry, 45(3), 636-640.

Liu, J. H., Yang, S. L., Zhu, Q., & Zhang, J. (2014). Controls on suspended sediment concentration profiles in the shallow and turbid Yangtze Estuary. Continental Shelf Research, 90(1), 96-108.

Nucci, C. D., & Fiorucci, E. (2011). Mean velocity profiles of fully-developed turbulent flows near smooth walls. Comptes Rendus Mécanique, 339(6), 388-395.

Poggi, D., Porporato, A., & Ridolfi, L. (2002). An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique. Experiments in Fluids, 32(3), 366-375.

Prandtl, L. (1925). Über die ausgebildete Turbulenz. (On Fully Developed Turbulence. In German). Z.A.M.M., 5, 136-139.

Rouse, H. (1937). Modern conceptions of the mechanics of fluid turbulence. Trans. ASCE. 102(1), 463-543.

Schmidt, W. (1925). XXIII. Gefügestatistik. Zeitschrift für Kristallographie. Mineralogie und Petrographie, 38(1), 392-423.

Soulsby, R. L. (1980). Selecting record length and digitization rate for near-bed turbulence measurements. Journal of Physical Oceanography, 10(2), 208-219.

Soulsby, R. L. (1983). The bottom boundary layer of shelf seas. Physical Oceanography of Coastal and Shelf seas ed., Elsevier oceanography series 35, 189-266.

Soulsby, R. L., & Dyer, K. R. (1981). The form of the near-bed velocity profile in a tidally accelerating flow. Journal of Geophysical Research: Oceans, 86(C9), 8067-8074.

Sultana, M. N., Akib, S., & Ashraf, M. A. (2017). Thermal comfort and runoff water quality performance on green roofs in tropical conditions. Geology, Ecology, and Landscapes, 1(1), 47-55.

Taylor, P. A., & Dyer, K. R. (1977). The theoretical models of flow near the bed and their implication for sediment transport. The Sea, 6(1), 579-601.

Wang, Y. H., & Yu, G. H. (2007). Velocity and concentration profiles of particle movement in sheet flows. Advances in water resources, 30(5), 1355-1359.

Zawar, Z. U., Khan, M., Khattak, Z., Abbas, M. A., & Ishfaque, M. (2017). Microfacies Analysis and Reservoir Potential of Sakesar Limestone, Nammal Gorge (Western Salt Range), Upper Indus Basin, Pakistan. Pakistan Journal of Geology, 1(1), 12-17.

Zhang, R. J., Xie, J. H., Chen, & W. B. (2007). River dynamics (In Chinese). Wuhan Univ. Press, Wuhan, Hubei, P.R. China.

Cómo citar

APA

Wu, G., Zhu, L. y Li, F. (2017). Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function. Earth Sciences Research Journal, 21(3), 129–134. https://doi.org/10.15446/esrj.v21n3.65172

ACM

[1]
Wu, G., Zhu, L. y Li, F. 2017. Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function. Earth Sciences Research Journal. 21, 3 (jul. 2017), 129–134. DOI:https://doi.org/10.15446/esrj.v21n3.65172.

ACS

(1)
Wu, G.; Zhu, L.; Li, F. Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function. Earth sci. res. j. 2017, 21, 129-134.

ABNT

WU, G.; ZHU, L.; LI, F. Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function. Earth Sciences Research Journal, [S. l.], v. 21, n. 3, p. 129–134, 2017. DOI: 10.15446/esrj.v21n3.65172. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/65172. Acesso em: 19 ago. 2024.

Chicago

Wu, Guanglin, Liangsheng Zhu, y Fangcheng Li. 2017. «Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function». Earth Sciences Research Journal 21 (3):129-34. https://doi.org/10.15446/esrj.v21n3.65172.

Harvard

Wu, G., Zhu, L. y Li, F. (2017) «Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function», Earth Sciences Research Journal, 21(3), pp. 129–134. doi: 10.15446/esrj.v21n3.65172.

IEEE

[1]
G. Wu, L. Zhu, y F. Li, «Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function», Earth sci. res. j., vol. 21, n.º 3, pp. 129–134, jul. 2017.

MLA

Wu, G., L. Zhu, y F. Li. «Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function». Earth Sciences Research Journal, vol. 21, n.º 3, julio de 2017, pp. 129-34, doi:10.15446/esrj.v21n3.65172.

Turabian

Wu, Guanglin, Liangsheng Zhu, y Fangcheng Li. «Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function». Earth Sciences Research Journal 21, no. 3 (julio 1, 2017): 129–134. Accedido agosto 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/65172.

Vancouver

1.
Wu G, Zhu L, Li F. Mean velocity and suspended sediment concentration profile model of turbulent shear flow with probability density function. Earth sci. res. j. [Internet]. 1 de julio de 2017 [citado 19 de agosto de 2024];21(3):129-34. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/65172

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

496

Descargas

Los datos de descargas todavía no están disponibles.