Publicado
Diagenetic controls on reservoir quality of tight sandstone: A case study of the Upper Triassic Yanchang formation Chang 7 sandstones, Ordos Basin, China
Controles diagenéticos en yacimientos de arenisca compacta: estudio de caso de las areniscas Chang 7, en la Formación Yanchang, Triásico Superior, cuenca de Ordos, China
DOI:
https://doi.org/10.15446/esrj.v22n2.72251Palabras clave:
Diagenesis, tight sandstone, reservoir quality, Ordos Basin, (en)Diagénesis, arenisca apretada, calidad del yacimiento, Cuenca de Ordos, (es)
Descargas
Through a range of petrological techniques, the petrology, diagenesis, pore characteristics, and controlling factors on the regional variations of reservoir quality of the Chang 7 sandstones were studied. These sandstones, mainly arkoses, lithic arkoses, and feldspathic litharenites, were deposited in a delta front and turbidites in semi-deep to deep lacustrine. The detrital constituents were controlled by the provenance and sedimentary condition, which resulted in a spatially variable composition; e.g., high biotite and feldspar contents in the northeast (NE) of the study area, and high contents of rock fragments, especially dolomite, matrix, and quartz in the southwest (SW). Diagenesis includes intense mechanical compaction, cementation, and dissolution of unstable minerals. Diagenetic minerals which were derived internally include quartz, ankerite, ferrous calcite, albite, illite, kaolinite, and chlorite. Thus the original sandstone composition hadfirm control over the development and distribution of cement. Mechanical compaction and late-stage cementations contribute to the porosity loss of sandstones of Chang7 member. The dissolution porosity in major sandstone, slightly higher than primary porosity is principally dependent on the accessibility of acid fluid. The high content of plastic component facilitated the reduction of primary porosity and limited the mineral dissolution. The best reservoir sandstones are found in W, and partly from NE, M districts, with porosity are primary. The relatively high textural maturity of these sandstones reduces the impact of compaction on primary pores, and commonly existed chlorite rims limited the precipitation of pore filling quartz and carbonate cementation in late stage.
Referencias
Ajdukiewicz, J. M., Nicholson, P. H., & Esch, W.L. (2010). Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico. AAPG Bulletin, 94(8), 1189-1227.
Al-Ramadan, K. A., Hussain, M., Imam, B., & Saner, S. (2004). Lithologic characteristics and diagenesis of the Devonian Jauf sandstone at Ghawar Field, Eastern Saudi Arabia. Marine & Petroleum Geology, 21(10), 1221-1234.
Anjos, S. M. C. D., Ros, L. F. D., Souza, R. S. D., Silva, C. M. D. A., & Sombra, C.L. (2000). Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar Rift Basin, Brazil. AAPG Bulletin, 84(11), 237-248.
Armitage, P. J., Worden, R. H., Faulkner, D. R., Aplin, A. C., Butcher, A. R., & Iliffe, J. (2010). Diagenetic and sedimentary controls on porosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: A petrological study of a caprock to a carbon capture site. Marine & Petroleum Geology, 27(7), 1395-1410.
Barclay, S. A., & Worden, R. H. (2000). Geochemical modelling of diagenetic reactions in a sub-arkosic sandstone. Clay Minerals, 35(1), 57-57.
Bjorkum, P. A., & Gjelsvik, N. (1988). An isochemical model for formation of authigenic kaolinite, K- feldspar and illite in sediments. Journal of Sedimentary Petrology, 58(3), 506-511.
Bjørlykke, K. (1998). Clay mineral diagenesis in sedimentary basins — a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Minerals, 33(1), 15-34.
Bjørlykke, K., & Jahren, J. (2010). Sandstones and Sandstone Reservoirs. Petroleum Geoscience, Springer Berlin Heidelberg, pp. 113-140.
Bjørlykke, K., & Jahren, J. (2012). Open closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin, 96(12), 2193-2214.
Blackbourn, G. A., & Thomson, M. E. (2000). Britannia field, UK North Sea: petrographic constraints on Lower Cretaceous provenance, facies and the origin of slurry-flow deposits. Petroleum Geoscience, 6(4), 329-343.
Burley, S. D., & Worden, R. H. (2003). Sandstone diagenesis: recent and ancient. International Association of sedimentologists.
Deng, X., Fu, J., Yao, J., Pang, J., & Sun, B. (2011). Sedimentary facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and breakthrough in petroleum exploration. Journal of Palaeogeography, 13(4), 443-455.
Dowey, P. (2012). Prediction of clay minerals and grain-coatings in sandstone reservoirs utilising ancient examples and modern analogue studies. University of Liverpool.
Ehrenberg, S. N. (1993). Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf. AAPG Bulletin, 77(7), 1260-1286.
Gluyas, J., & Coleman, M. (1992). Material flux and porosity changes during sediment diagenesis. Nature, 356(6364), 52-54.
Hillier, S., & Velde, B. (1992). Chlorite interstratified with a 7 Å mineral: an example from offshore Norway and possible implications for the interpretation of the composition of diagenetic chlorites. Clay Minerals, 27(4), 475-486.
Humphreys, B., & Humphreys, S. A. S. (1989). The distribution and significance of sedimentary apatite in Lower to Middle Devonian sediments East of Plymouth Sound. Geoscience in South-West England, 7(2).
Kugler, R. L., & Mchugh, A. (1990). Regional diagenetic variation in norphlet sandstone: implications for reservoir quality and the origin of porosity. AAPG Bulletin, 74, 9(9).
Lemon, N. M., & Cubitt, C. J. (2009). Illite Fluorescence Microscopy: A New Technique in the Study of Illite in the Merrimelia Formation, Cooper Basin, Australia. Clay Mineral Cements in Sandstones.
Loucks, R. G., & Dutton, S. P. (2007). Importance of Micropores in Deeply Buried Tertiary Sandstones along the Texas Gulf Coast. In: American Association of Petroleum Geologists Annual Convention Abstracts, 84.
Matlack, K. S., Houseknecht, D. W., Applin, K. R. (1989). Emplacement of clay into sand by infiltration. Journal of Sedimentary Petrology, 59(1), 77-87.
Mcbride, E. F. (1989). Quartz cement in sandstones: a review. Earth-Science Reviews, 26(1-3), 69-112.
Morad, S. (1998). Carbonate cementation in sandstones: controls by patterns of fluid flow and psycho-chemical, environmental and climatic conditions. Wiley-Blackwell.
Morad, S. (2009). Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. Blackwell Publishing Ltd.
Morad, S., & De Ros, L.F. (1994). Geochemistry and diagenesis of strata bound calcite cement layers within the Rannoch Formation of the Brent Group, Murchison Field, North Viking Graben (northern North Sea), discussion and reply. Sedimentary Geology, 93, 135–147.
Morad, S., Ketzer, J. M., & Ros, L. F. D. (2000). Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47(s1), 95-120.
Needham, S.J. (2008). Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes. Journal of Sedimentary Research, 75(6), 1028-1037.
Ozkan, A., Cumella, S. P., Milliken, K. L., & Laubach, S. E. (2011). Prediction of lithofacies and reservoir quality using well logs, Late Cretaceous Williams Fork Formation, Mamm Creek Field, Piceance Basin, Colorado. AAPG Bulletin, 95(10), 1699-1723.
Pittman, E. D. (1971). Microporosity in carbonate rocks: geological notes. AAPG Bulletin, 55.
Pittman, E. D., & Larese, R. E. (1991). Compaction of lithic sands: experimental results and applications. AAPG Bulletin, 75, 8(8), 1279-1299.
Remy, R. R. (1994). Porosity reduction and major controls on diagenesis of Cretaceous-Paleocene volcaniclastic and arkosic sandstone, Middle Park Basin, Colorado. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes; (United States), 64:4(4), 797-806.
Ros, L. F. D., Anjos, S. M. C., & Morad, S. (1994). Authigenesis of amphibole and its relationship to the diagenetic evolution of Lower Cretaceous sandstones of the Potiguar Rift Basin, Northeastern Brazil. Sedimentary Geology, 88(3-4), 253-266.
Ryan, P. C. (1997). The chemical composition of serpentine/chlorite in the Tuscaloosa Formation, United States Gulf Coast: EDX vs. XRD determinations, implications for mineralogic reactions and the origin of anatase. Clays and Clay Minerals, 45(3), 339-352.
Shanley, K. W., & Cluff, R. M. (2015). The evolution of pore-scale fluid-saturation in low-permeability sandstone reservoirs. AAPG Bulletin, 99(10), 1957-1990.
Sibley, D. F., & Blatt, H. (1976). Intergranular pressure solution and cementation of the tuscarora orthoquartzite. Journal of Sedimentary Research, 4, 881-896.
Spoetl, C., Houseknecht, D. W., & Longstaffe, F. J. (1994). Authigenic chlorites in sandstones as indicators of high-temperature diagenesis, Arkoma Foreland Basin, USA. Journal of Sedimentary Research, 64(3), 553-566.
Stokkendal, J., Friis, H., Svendsen, J. B., Poulsen, M. L. K., & Hamberg, L. (2009). Predictive permeability variations in a Hermod sand reservoir, Stine Segments, Siri Field, Danish North Sea. Marine & Petroleum Geology, 26(3), 397-415.
Sullivan, M. D., Haszeldine, R. S., & Fallick, A. E. (1990). Linear coupling of carbon and strontium isotopes in Rotliegend Sandstone, North Sea: Evidence for cross-formational fluid flow. Geology, 18(12), 1215-1218.
Surdam, R. C., Boese, S. W., & Crossey, L. J. (1984). The chemistry of secondary porosity. AAPG Memoir, 37(2), 183-200.
Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R., Birbiglia, G. V., Kittridge M. G., Macaulay, C. I., & Espejo, I. S. (2010). Sandstone diagenesis and reservoir quality prediction: models, myths, and reality. AAPG Bulletin, 94(8), 1093-1132.
Tucker, M.E. (2003). Sedimentary rocks in the field. J. Wiley.
Valloni, R., Lazzari, D., & Calzolari, M. A. (1991). Selective alteration of arkose framework in Oligo-Miocene turbidites of the Northern Apennines foreland: impact on sedimentary provenance analysis. Geological Society London Special Publications, 57(1), 125-136.
Wang, Q., Zhuo, X. Z., Chen, G. J., & Li, X. Y. (2007). Characteristics of carbon and oxygen isotopic compositions of carbonate cements in Triassic Yanchang sandstone in Ordos Basin. Natural Gas Industry, 27(10), 28-32.
Worden, R. H., & Barclay, S.A. (2000). Internally-sourced quartz cement due to externally-derived CO2 in sub-arkosic sandstones, North Sea. Journal of Geochemical Exploration, 69(00), 645-649.
Worden, R. H., & Morad, S. (2009). Clay Mineral Cements in Sandstones. International Association of Sedimentologists.
Worden, R. H., & Morad, S. (2000). Quartz Cementation in Oil Field Sandstones: A Review of the Key Controversies. Quartz Cementation in Sandstones. Blackwell Publishing Ltd, pp. 1-20.
Worden, R., & Morad, S. (2003). Clay mineral cements in sandstones: a review of the detrital and diagenetic sources and evolution during burial.
Xie, X. (2016). Provenance and sediment dispersal of the Triassic Yanchang Formation, Southwest Ordos Basin, China, and its implications. Sedimentary Geology, 335, 1-16.
Yang, H., Dou, W. T., Liu, X. Y. (2010). Analysis on sedimentary facies of member 7 in Yanchang formation of Triassic in Ordos basin. Acta Sedimentologica Sinica, 28, 254-263.
Yang, H., Jinhua, F. U., Wei, X., & Ren, J. (2011). Natural gas exploration domains in Ordovician marine carbonates, Ordos Basin. Acta Petrolei Sinica, 32(5), 733-740.
Zou, C. N., Yang, Z., Tao, S. Z., Yuan, X. J., Zhu, R. K., Hou, L. H., Wu, S. T., Sun, L., Zhang, G. S., Bai, B., Wang, L., Gao, X. H., & Pang, Z. L. (2013). Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China. Earth-Science Reviews, 126, 358-369.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Jinsha Yuan, Fei Zhao, Ning Wang, Haizhou Zhao. (2019). Optimal strategy for domestic electric water heaters based on virtual energy storage characteristics. Desalination and Water Treatment, 168, p.357. https://doi.org/10.5004/dwt.2019.24200.
2. Yunqi Luan, Yunpeng Luan, Youjie Zhao, Fei Xiong, Yanmei Li, Lili Liu, Yong Cao, Fei Dai. (2019). Isorhamnetin in Tsoong blocks Hsp70 expression to promote apoptosis of colon cancer cells. Saudi Journal of Biological Sciences, 26(5), p.1011. https://doi.org/10.1016/j.sjbs.2019.04.002.
3. N. N. Timonina, M. S. Nechaev, I. L. Ulnyrov. (2023). Postsedimentary Transformations in the Lower Triassic Deposits in the North of Varandey-Adzva Zone (Pechora Oil and Gas-Bearing Basin). Литология и полезные ископаемые, (2), p.163. https://doi.org/10.31857/S0024497X22700045.
4. Marcos Antonio Klunk, Sudipta Dasgupta, Mohuli Das, Rommulo Vieira Conceição, Soyane Juceli Siqueira Xavier, Farid Chemale, Paulo Roberto Wander. (2021). Application of geochemical modelling software as a tool to predict the diagenetic reactions between the marine connate water and the salt dome in a petroleum system. Journal of South American Earth Sciences, 109, p.103272. https://doi.org/10.1016/j.jsames.2021.103272.
5. Naser Golsanami, Madusanka N. Jayasuriya, Weichao Yan, Shanilka G. Fernando, Xuefeng Liu, Likai Cui, Xuepeng Zhang, Qamar Yasin, Huaimin Dong, Xu Dong. (2022). Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images. Energy, 240, p.122599. https://doi.org/10.1016/j.energy.2021.122599.
6. N. N. Timonina, M. S. Nechaev, I. L. Ulnyrov. (2023). Postsedimentary Transformations of Lower Triassic Rocks in the Northern Varandey-Adzva Zone (Pechora Oil- and Gas-Bearing Basin). Lithology and Mineral Resources, 58(2), p.143. https://doi.org/10.1134/S0024490222700031.
7. Haihua ZHU, Tingshan ZHANG, Dakang ZHONG, Yaoyu LI, Jingxuan ZHANG, Xiaohui CHEN. (2019). Binary pore structure characteristics of tight sandstone reservoirs. Petroleum Exploration and Development, 46(6), p.1297. https://doi.org/10.1016/S1876-3804(19)60283-1.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Earth Sciences Research Journal
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Earth Sciences Research Journal posee una licencia Creative Commons Attribution.
Usted es libre de: Compartir: copie y redistribuya el material en cualquier medio o formato. Adaptar: remezclar, transformar y ampliar el material para cualquier propósito, incluso comercialmente. El licenciante no puede revocar estas libertades mientras siga los términos de la licencia.