Publicado

2019-10-01

Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau

Características básicas y evolución de las estructuras geológicas en el margen oriental de la meseta Qinghai-Tíbet

DOI:

https://doi.org/10.15446/esrj.v23n4.84000

Palabras clave:

Qinghai-Tibet Plateau, Eastern margin area, Geological structure, Basic characteristics, Evolution research, Crustal movement (en)
meseta Qinghai-Tibet, Área del margen oriental, Estructura geológica, Características básicas, Investigación de la evolución, Movimiento de la corteza. (es)

Descargas

Autores/as

  • Dejie Deng College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
  • Changliu Wang Architecture and Urban Planning College, Southwest Minzu University, Chengdu, 610041, China
  • Peihao Peng College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu, 610059, China

Based on field geological survey and stratigraphic profile survey in the eastern margin of the Qinghai-Tibet Plateau, the basic characteristics and evolution of geological structure in the eastern margin of the Qinghai-Tibet Plateau are studied. The Dongyuan area of the Qinghai-Tibet Plateau is divided into the late Cenozoic period and the current period. During the Late Cenozoic, the Pliocene Xigeda lacustrine deposits develops from 4.2 MaBP to 2.6 MaBP, with 9 cold-warm climate change stages. There are 4.3 MaBP old glacial period in this area, and 5 extreme paleoclimate events in Quaternary. At present, the horizontal movement intensity and mode of different tectonic zones are determined by the northward extrusion, eastward extrusion and rotation around the eastern tectonic junction in the study area, and the stages of the movement state changing with time are related to the gestation and occurrence of extra-large earthquakes. At present, the three-dimensional crustal movement shows that the tectonic activity differentiation of mountain and basin, which is related to tectonic dynamic environment and deep material activity, is related to the compression, shortening and uplift of plateau mountain and the extension and subsidence of basin, reflecting the inheritance of neotectonic activity. Through practical analysis, it is found that the eastern margin of the Qinghai-Tibet Plateau is composed of Minshan fault block and Longmenshan structural belt. The left-lateral dislocation of Minjiang fault is roughly the same as the vertical dislocation. In Longmenshan tectonic belt, the right-lateral dislocation of Maowen-Wenchuan fault, Beichuan-Yingxiu fault and other main faults is the same as the vertical dislocation.

En este trabajo se estudian las características básicas y la evolución de la estructura geológica en el margen oriental de la meseta Qinghai-Tíbet con base en el análisis geológico de campo y el estudio del perfil estratigráfico de la zona de estudio. El área de Dongyuan de la meseta Qinghai-Tíbet se divide en el período Cenozoico tardío y el período actual. Durante el Cenozoico Tardío, los depósitos lacustres del Plioceno Xigeda se desarrollaron de 4.2 MaBP a 2.6 MaBP, con 9 etapas de cambio climático frío-cálido. Hay 4.3 MaBP viejos períodos glaciales en esta área, y cinco eventos paleoclimáticos extremos en el Cuaternario. En la actualidad, la intensidad del movimiento horizontal y el modo de las diferentes zonas tectónicas están determinados por la extrusión hacia el norte, la extrusión hacia el este y la rotación alrededor de la unión tectónica oriental en el área de estudio, y las etapas del cambio del estado del movimiento con el tiempo están relacionadas con la gestación y ocurrencia de terremotos extragrandes. En la actualidad, el movimiento cortical tridimensional muestra que la diferenciación de la actividad tectónica de la montaña y la cuenca, que está relacionada con el entorno dinámico tectónico y la actividad del material profundo, está relacionada con la compresión, el acortamiento y la elevación de la meseta de montaña y la extensión y hundimiento de cuenca, que refleja la herencia de la actividad neotectónica. A través del análisis práctico, se descubre que el margen oriental de la meseta Qinghai-Tíbet está compuesto por el bloque de falla Minshan y el cinturón estructural Longmenshan. La dislocación lateral izquierda de la falla de Minjiang es aproximadamente la misma que la dislocación vertical. En el cinturón tectónico de Longmenshan, la dislocación lateral derecha de la falla de Maowen-Wenchuan, la falla de Beichuan-Yingxiu y otras fallas principales es la misma que la dislocación vertical.

Referencias

Bu, H. Y., Wang, X. J., Zhou, X. H., Qi, W., Liu, K., Ge, W. J., … Zhang, S. T. (2016). The ecological and evolutionary significance of seed shape and volume for the germination of 383 species on the eastern Qinghai-Tibet plateau. Folia Geobotanica, 51(4), 333-341.

Chen, J., Zhao, L., Sheng, Y., Li, J., Wu, X., Du, E.,… Pang, Q. (2016). Some Characteristics of Permafrost and Its Distribution in the Gaize Area on the Qinghai—Tibet Plateau, China. Arctic Antarctic & Alpine Research, 48(2), 395-409.

Feng, D. X., Gao, X. Q., Yang, L. W., Hui, X. Y., & Zhou, Y. (2017). A spatial-temporal distribution characteristics of the atmospheric methane in troposphere on Qinghai-Tibetan plateau using ARIS data. China Environmental Science, 37(8), 2822-2830.

He, H. L., Yang, X. C., Li, D. D., Yin, C. Y., Li, Y. X., Zhou, G. Y., … Liu, Q. (2017). Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 41(1), 93-98.

Hu, G., Lin, Z., Wu, X., Li, R., Wu, T., Xie, C., … Cheng, G. (2016). An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China. Journal of Arid Land, 8(2), 232-240.

Jiang, L., Ruan, Q., & Chen, W. (2016). The complete mitochondrial genome sequence of the Xizang Plateau frog, Nanorana parkeri (Anura: Dicroglossidae). Mitochondrial Dna, 27(5), 1-2.

Jie, L., Ya, H. L., De, Z. L., & Gao, L. (2017). Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect. Biodiversity Science, 25(2), 41-45.

Li, J. L.,Zheng, B. L.,& Peng, Y. Z. (2018). Study on diffusion stress of cylindrical gradient electrode based on Gibbs free energy variation. Chinese Journal of Power Sources, 42(9), 38-41+155.

Liu, C., Cai, X., & Chen, Q. (2018). Research on chain STATCOM with Energy Storage function. Journal of Power Supply, 16 (4):21-27.

Pan, W. J., Yang, L., & Zhu, X. P. (2018). Modeling of Colored Petri Nets in the Operation process of busy Airport apron. Computer simulation, 35(1), 52-56.

Sun, J. J., Zhao, Y., & Wang, S. G. (2018). Improvement of SIFT feature matching algorithm based on Image gradient Information Enhancement. Journal of Jilin University (Science Edition), 56(1), 82-88.

Wang, L., Tang, J., & Wang, X. D. (2017). Geological characteristics of lead-zinc ore deposits in Qinghai-Tibet Plateau. Science & Technology Review, 35(12), 83-88.

Wang, Z. (2017). Geological features, the formation and the evolution of the Qinghai-Tibetan Plateau. Science & Technology Review, 35(06), 51-58.

Wan, Q., & Du, X. X. (2018). Research on the Application of Industrial Development Network Model based on Evolutionary Network in Science and Technology Management. Automation & Instrumentation, 1(6)25-29

Wei, Y., Guo, X., Yao, T. Zhu, M., & Wang, Y. (2016). Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Climate Dynamics, 47(3-4), 805-815.

Xiao, Q., Tan, J., Hu, H., Zhou, S. D., & He, X. (2017). Semenoviagyirongensis(Apiaceae), a new species from Xizang, China. Phytokeys, 82(82), 57-72.

Yang, W., Miao, L. L., Dan, Y. U., Liu, C. H., & Wang, Z. (2017). Effects of environmental factors on gross caloric values of three life-forms aquatic plants on the Qinghai-Xizang Plateau,China. Chinese Journal of Plant Ecology, 41(2), 209-218.

Yi, W., & Wang, C. (2016). Features of clouds and convection during the pre- and post-onset periods of the Asian summer monsoon. Theoretical & Applied Climatology, 123(3-4), 551-564.

Zhang, B. B., Liu, F., Ding, J. Z., Fang, K., Yang, G. B., Li, L., … Yang, Y. (2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40(2), 93-101.

Zhang, Z. Y., Liu, F., & Huang, L. Y. (2017). Influence of cross section shape of electromagnetic track launcher on emission performance. Journal of China Academy of Electronics and Information Technology, 12(5), 513-517.

Cómo citar

APA

Deng, D., Wang, C. y Peng, P. (2019). Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau. Earth Sciences Research Journal, 23(4), 283–291. https://doi.org/10.15446/esrj.v23n4.84000

ACM

[1]
Deng, D., Wang, C. y Peng, P. 2019. Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau. Earth Sciences Research Journal. 23, 4 (oct. 2019), 283–291. DOI:https://doi.org/10.15446/esrj.v23n4.84000.

ACS

(1)
Deng, D.; Wang, C.; Peng, P. Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau. Earth sci. res. j. 2019, 23, 283-291.

ABNT

DENG, D.; WANG, C.; PENG, P. Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau. Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 283–291, 2019. DOI: 10.15446/esrj.v23n4.84000. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/84000. Acesso em: 12 ago. 2024.

Chicago

Deng, Dejie, Changliu Wang, y Peihao Peng. 2019. «Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau». Earth Sciences Research Journal 23 (4):283-91. https://doi.org/10.15446/esrj.v23n4.84000.

Harvard

Deng, D., Wang, C. y Peng, P. (2019) «Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau», Earth Sciences Research Journal, 23(4), pp. 283–291. doi: 10.15446/esrj.v23n4.84000.

IEEE

[1]
D. Deng, C. Wang, y P. Peng, «Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau», Earth sci. res. j., vol. 23, n.º 4, pp. 283–291, oct. 2019.

MLA

Deng, D., C. Wang, y P. Peng. «Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau». Earth Sciences Research Journal, vol. 23, n.º 4, octubre de 2019, pp. 283-91, doi:10.15446/esrj.v23n4.84000.

Turabian

Deng, Dejie, Changliu Wang, y Peihao Peng. «Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau». Earth Sciences Research Journal 23, no. 4 (octubre 1, 2019): 283–291. Accedido agosto 12, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/84000.

Vancouver

1.
Deng D, Wang C, Peng P. Basic Characteristics and Evolution of Geological Structures in the Eastern Margin of the Qinghai-Tibet Plateau. Earth sci. res. j. [Internet]. 1 de octubre de 2019 [citado 12 de agosto de 2024];23(4):283-91. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/84000

Descargar cita

CrossRef Cited-by

CrossRef citations8

1. Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, Hao Wang. (2023). Application of an improved distributed hydrological model based on the soil–gravel structure in the Niyang River basin, Qinghai–Tibet Plateau. Hydrology and Earth System Sciences, 27(14), p.2681. https://doi.org/10.5194/hess-27-2681-2023.

2. Ke Li, Rui Zhang, Li-Ying Sui, Chi Zhang, Xue-Kai Han. (2024). Genetic structure of ten Artemia populations from China: cumulative effects of ancient geological events, climatic changes, and human activities. Frontiers in Marine Science, 11 https://doi.org/10.3389/fmars.2024.1375641.

3. Shuai Li, Zhongyun Ni, Yinbing Zhao, Wei Hu, Zhenrui Long, Haiyu Ma, Guoli Zhou, Yuhao Luo, Chuntao Geng. (2022). Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake. International Journal of Environmental Research and Public Health, 19(6), p.3229. https://doi.org/10.3390/ijerph19063229.

4. Chu Jian, Jun Li, Changsheng Shao. (2021). Gravity anomaly characteristics and basin geological structure in Wan’an Basin. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07515-3.

5. Huajie Sun, Li Sun, Shuying Zang. (2021). History of atmospheric PAHs sedimentation and response to human activities in Bosten Lake in Western China. Arabian Journal of Geosciences, 14(11) https://doi.org/10.1007/s12517-021-07432-5.

6. Junxue Ma, Jian Chen, Chong Xu. (2024). Hydraulic reconstruction of giant paleolandslide‐dammed lake outburst floods in high‐mountain region, eastern Tibetan Plateau: A case study of the Upper Minjiang River valley. Transactions in GIS, https://doi.org/10.1111/tgis.13218.

7. Weicheng Gong, Huayuan Chen, Yajing Gao, Qing Li, Yunqiang Sun. (2024). A test on methods for Mc estimation and spatial-temporal distribution of b-value in the eastern Tibetan Plateau. Frontiers in Earth Science, 12 https://doi.org/10.3389/feart.2024.1335938.

8. Tonghong Wang, Xufeng Wang, Songlin Zhang, Xiaoyu Song, Yang Zhang, Junlei Tan, Zhiguo Ren, Ziwei Xu, Tao Che, Yanpeng Yang, Zain Nawaz. (2024). Extreme low air temperature and reduced moisture jointly inhibit respiration in alpine grassland on the Qinghai-Tibetan Plateau. Science of The Total Environment, 927, p.172039. https://doi.org/10.1016/j.scitotenv.2024.172039.

Dimensions

PlumX

Visitas a la página del resumen del artículo

564

Descargas

Los datos de descargas todavía no están disponibles.