Publicado

2020-10-12

Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China

Investigación en subsidencia minera con datos de Sentinel-1A por tecnología SBAS-InSAR: estudio de caso de Ningdong Coalfield, China

DOI:

https://doi.org/10.15446/esrj.v24n3.90123

Palabras clave:

small baseline subset (SBAS), time-series InSAR, Ningdong Coalfield, Loess Plateau, deformation monitoring (en)
subconjunto de referencia pequeño (SBAS), series de tiempo InSAR, campo de carbón de Ningdong, meseta de Loess, monitoreo de deformación (es)

Descargas

Autores/as

  • Fei Ma School of Geological Engineering and Geomatics, Chang’an University, Xi’an, China
  • Lichun Sui National Administration of Surveying, Mapping, and Geoinformation Engineering Research Center of National Geographic Conditions Monitoring, Xi’an, China

Ground deformation characterization was difficult to obtain over large spatial areas before the invention of the Satellite radar interferometry (InSAR) technique. Especially underground mining in the Loess Plateau of China, it causes large-scale ground damage within a short period of time. A small baseline subset (SBAS) algorithm can overcome some limitations of InSAR technology, such as temporal decorrelation, spatial decorrelation, and atmospheric delay. In this study, SBAS-InSAR technology was applied to process 19 scenes of Sentinel-1A data in Ningdong Coalfield, China. We investigated and analyzed the mining subsidence status from March 2015 to June 2016. There are 6 ground deformation areas in the cumulative subsidence maps, and the maximum cumulative subsidence value is -178cm distributed in the Renjiazhuang mining area during this period. The deformation rate map shows that the maximum deformation rate was -117cm/year. GPS data above the working tunnel was collected in six mining areas in Shigouyi. The subsidence value of SBAS data is consistent with GPS observation station data. The results reveal the evolution process of subsidence in mining subsidence and are helpful to the early warning of the mine disaster.

Antes de la invención de la técnica de interferometría de radar satelital (InSAR) la caracterización de la deformación del suelo era difícil de obtener en grandes áreas. La minería subterránea en la meseta de Loess de China causa daños a gran escala en un corto período. El algoritmo de subconjunto de línea de base pequeña (SBAS) puede superar algunas limitaciones de la tecnología InSAR, como la decorrelación temporal, la decorrelación espacial y el retraso atmosférico. En este estudio se aplicó la tecnología SBAS-InSAR para procesar 19 escenas de datos Sentinel-1A en la mina de carbón de Ningdong, China. Además, se investigó y se analizó el estado de subsidencia minera desde marzo de 2015 hasta junio de 2016. Hay seis áreas de deformación del suelo en los mapas de subsidencia acumulada y el valor de subsidencia acumulativo máximo es -178cm distribuido en el área minera de Renjiazhuang durante este período. El mapa de la tasa de deformación muestra que la tasa de deformación máxima fue de -117 cm/año. Se visitaron estas seis áreas mineras y se recopilaron datos de GPS sobre el túnel de trabajo en el área minera de Shigouyi. El valor de subsidencia de los datos SBAS es consistente con los datos de la estación de observación GPS. Los resultados revelan el proceso de evolución en el hundimiento minero y son útiles para la alerta temprana del desastre de la mina.

Referencias

Bai, L., Jiang, L., Wang, H., & Sun, Q. (2016). Spatiotemporal Characterization of Land Subsidence and Uplift (2009-2010) over Wuhan in Central China Revealed by TerraSAR-X InSAR Analysis. Remote Sensing, 8, doi:10.3390/rs8040350.

Bateson, L., Cigna, F., Boon, D., & Sowter, A. (2015). The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. International Journal of Applied Earth Observation and Geoinformation, 34, 249-257, doi:10.1016/j.jag.2014.08.018.

Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375-2383, doi:10.1109/tgrs.2002.803792.

Chao, M. A., & XinJian, S. (2006). A multi-segment analytic modeling of hypocentrai geometric characteristic parameters of the Ms8.1 earthquake at the Kunlun Mountains. Chinese Journal of Geophysics, 49, 428-437.

Chen, G., Liu, Y., & Shan, X. (2010). Application of PS-InSAR technique in the deformation monitoring in mining collapse areas in Beijing. The Chinese Journal of Geological Hazard and Control, 21, 59-63.

Cigna, F., Bateson, L. B., Jordan, C. J., & Dashwood, C. (2014). Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sensing of Environment, 152, 441-466, doi:10.1016/j.rse.2014.06.025.

Daqing, G. E., Yan, W., Jinghui, F. A. N., Shengwei, L. I. U., Xiaofang, G. U. O., & Yi, W. (2007). A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems. Remote Sensing for Land & Resources, 14-22.

Diao, X., Wu, K., Zhou, D., & Li, L. (2016). Integrating the probability integral method for subsidence prediction and differential synthetic aperture radar interferometry for monitoring mining subsidence in Fengfeng, China. Journal of Applied Remote Sensing, 10, doi:10.1117/1.Jrs.10.016028.

Dong, L., & Tang, F. (2018). Experimental Research On Radar Remote Sensing Monitoring of Coal Mining Subsidence in Loess Mining Area. 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications, pp. 142-146.

Fan, H., Gao, X., Yang, J., Deng, K., & Yu, Y. (2015). Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Offset-Tracking Methods. Remote Sensing, 7, 9166-9183, doi:10.3390/rs70709166.

Fan, H., Xu, Q., Hu, Z., & Du, S. (2017). Using temporarily coherent point interferometric synthetic aperture radar for land subsidence monitoring in a mining region of western China. Journal of Applied Remote Sensing, 11, doi:10.1117/1.Jrs.11.026003.

Fan, H. D., Gu, W., Qin, Y., Xue, J. Q., & Chen, B. Q. (2014). A model for extracting large deformation mining subsidence using D-InSAR technique and probability integral method. Transactions of Nonferrous Metals Society of China, 24, 1242-1247, doi:10.1016/s1003-6326(14)63185-x.

Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25, 4035-4038, doi:10.1029/1998gl900033.

Graber, H. C., Thompson, D. R., & Carande, R. E. (1996). Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. Journal of Geophysical Research (USA), 101, 25813-25832, doi:10.1029/96jc02241.

Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35, L16302 (16305 pp.)-L16302 (16305 pp.), doi:10.1029/2008gl034654.

Huang, C., Xia, H., & Hu, J. (2019). Surface Deformation Monitoring in Coal Mine Area Based on PSI. IEEE Access, 7, 29672-29678, doi:10.1109/access.2019.2900258.

Huang, J., Xie, M., Farooq, A., & Williams, E. J. (2017). DInSAR technique for slow-moving landslide monitoring based on slope units. Survey Review, 51, 70-77, doi:10.1080/00396265.2017.1380947.

Jingfa, Z., Qinshi, G. U. O., & Lixia, G. (2008). Measuring Mining Induced Subsidence by Using InSAR Technique --Taking Wuan Mining Area in Hebei as An Example. Geo-information Science, 10, 651-657.

Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., & Pepe, A. (2007). An overview of the small BAseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure and Applied Geophysics, 164, 637-661, doi:10.1007/s00024-007-0192-9.

Lanari, R., Casu, F., & Manzo, M. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102, 195-210, doi:10.1016/j.rse.2006.01.023.

Lanari, R.,. Mora, O., Manunta, M., Mallorqui, J. J., Berardino, P., & Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42, 1377-1386, doi:10.1109/tgrs.2004.828196.

Liu, P., Li, Q., Li, Z., Hoey, T., Liu, G., Wang, C., Hu, Z., Zhou, Z., & Singleton, A. (2016). Anatomy of Subsidence in Tianjin from Time Series InSAR. Remote Sensing, 8, doi:10.3390/rs8030266.

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138-142, doi:10.1038/364138a0.

Mroz, M., & Perski, Z. (2003). The integration of optical and InSAR data for land subsidence monitoring and its impact on environment of the Upper Silesian Coal Basin; pp. 621-624.

Mukul, M., Srivastava, V., & Mukul, M. (2016). Accuracy analysis of the 2014-2015 Global Shuttle Radar Topography Mission (SRTM) 1 arc-sec C-Band height model using International Global Navigation Satellite System Service (IGS) Network. Journal of Earth System Science, 125, 909-917, doi:10.1007/s12040-016-0716-8.

Muskett, R. R., Lingle, C. S., Sauber, J. M., Rabus, B. T., & Tangborn, W. V. (2008). Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth and Planetary Science Letters, 265, 345-359, doi:10.1016/j.epsl.2007.10.012.

Necsoiu, M., Onaca, A., Wigginton, S., & Urdea, P. (2016). Rock glacier dynamics in Southern Carpathian Mountains from high-resolution optical and multi-temporal SAR satellite imagery. Remote Sensing of Environment, 177, 21-36, doi:10.1016/j.rse.2016.02.025.

Ng, A. H. M., Chang, H. C., Ge, L., Rizos, C., & Omura, M. (2009). Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth, Planets and Space, 61, 733-745, doi:10.1186/bf03353180.

Normand, J. C. L., & Heggy, E. (2015). InSAR Assessment of Surface Deformations in Urban Coastal Terrains Associated With Groundwater Dynamics. Ieee Transactions on Geoscience and Remote Sensing, 53, 6356-6371, doi:10.1109/tgrs.2015.2437368.

Raucoules, D., Le Cozannet, G., de Michele, M., & Capo, S. (2018). Observing water-level variations from space-borne high-resolution Synthetic Aperture Radar (SAR) image correlation. Geocarto International, 33, 977-987, doi:10.1080/10106049.2017.1323962.

Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H., & Fielding, E. J. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 101, 23109-23125, doi:10.1029/96je01459.

Samsonov, S., d'Oreye, N., & Smets, B. (2013). Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142-154, doi:10.1016/j.jag.2012.12.008.

Schaefer, L., Lu, Z., & Oommen, T. (2016). Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote Sensing, 8, doi:10.3390/rs8010073.

Temporim, F. A., Gama, F. F., Paradella, W. R., Mura, J. C., Silva, G. G., & Santos, A. R. (2018). Spatiotemporal monitoring of surface motions using DInSAR techniques integrated with geological information: a case study of an iron mine in the Amazon region using TerraSAR-X and RADARSAT-2 data. Environmental Earth Sciences, 77, doi:10.1007/s12665-018-7871-y.

Usai, S. (2003). A least squares database approach for SAR interferometric data. IEEE Transactions on Geoscience and Remote Sensing, 41, 753-760, doi:10.1109/tgrs.2003.810675.

Wang, Q. J., Li, Z. W., Du, Y. N., Xie, R. A., Zhang, X. Q., Jiang, M., & Zhu, J. J. (2014). Generalized functional model of maximum and minimum detectable deformation gradient for PALSAR interferometry. Transactions of Nonferrous Metals Society of China, 24, 824-832, doi:10.1016/s1003-6326(14)63132-0.

Wang, Y., Zhao, F., Cheng, L., & Yang, K. (2015). Framework for monitoring the conversion of cultivated land to construction land using SAR image time series. Remote Sensing Letters, 6, 794-803, doi:10.1080/2150704x.2015.1081304.

Wang, Z., Zhang, J., & Huang, G. (2014). Precise monitoring and analysis of the land subsidence in Jining coal mining area based on InSAR technique. Journal of China University of Mining & Technology, 43, 169-174.

Wegmuller, U., Strozzi, T., & Bitelli, G. (1999). Validation of ERS differential SAR interferometry for land subsidence mapping: the Bologna case study. IEEE 1999 International Geoscience and Remote Sensing Symposium,10.1109/igarss.1999.774555pp. 1131-1133 vol.1132.

Wu, L. X., Gao, J. H., Ge, D. Q., & Liao, M. S. (2005). Experimental study on surface subsidence monitoring with D-InSAR in mining area. Journal of Northeastern University (Natural Science), 26, 778-782.

Yang, C., Zhang, Q., Zhao, C., Ji, L., & Zhu, W. (2010). Monitoring mine collapse by D-InSAR. Mining Science and Technology (China), 20, 696-700, doi:https://doi.org/10.1016/S1674-5264(09)60265-9.

Yang, Z., Li, Z., Zhu, J., Preusse, A., Hu, J., Feng, G., Wang, Y., & Papst, M. (2018). An InSAR-Based Temporal Probability Integral Method and its Application for Predicting Mining-Induced Dynamic Deformations and Assessing Progressive Damage to Surface Buildings. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 472-484, doi:10.1109/jstars.2018.2789341.

Yin, H., Zhu, J., Li, Z., Ding, X., & Wang, C. (2011). Ground Subsidence Monitoring in Mining Area Using DInSAR SBAS Algorithm. Acta Geodaetica et Cartographica Sinica, 40, 52-58.

Yufeng, Z., Xiaoli, D., Zhiwei, L., & Yan, L. (2014). Monitoring of surface subsidence of the mining area based on SBAS. Journal of Computers, 9, 1177-1184, doi:10.4304/jcp.9.5.1177-1184.

Zhao, B. C., Li, H. Z., Guo, G. L., & Mi, L. Q. (2018). Study on high-precision regional monitoring method of high-grade highways subsidence under the influence of underground mining. Survey Review, 50, 174-185, doi:10.1080/00396265.2016.1252531.

Zhao, C., Lu, Z., & Zhang, Q. (2013). Time-series deformation monitoring over mining regions with SAR intensity-based offset measurements. Remote Sensing Letters, 4, 436-445, doi:10.1080/2150704x.2012.746482.

Zhou, L., Zhang, D., Wang, J., Huang, Z., & Pan, D. (2013). Mapping Land Subsidence Related to Underground Coal Fires in the Wuda Coalfield (Northern China) Using a Small Stack of ALOS PALSAR Differential Interferograms. Remote Sensing, 5, 1152-1176, doi:10.3390/rs5031152.

Zhu, J. J., Xing, X. M., Hu, J., & Li, Z. W. (2011). Monitoring of ground surface deformation in mining area with InSAR technique. Chinese Journal of Nonferrous Metals, 21, 2564-2576.

Cómo citar

APA

Ma, F. y Sui, L. (2020). Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China. Earth Sciences Research Journal, 24(3), 373–386. https://doi.org/10.15446/esrj.v24n3.90123

ACM

[1]
Ma, F. y Sui, L. 2020. Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China. Earth Sciences Research Journal. 24, 3 (oct. 2020), 373–386. DOI:https://doi.org/10.15446/esrj.v24n3.90123.

ACS

(1)
Ma, F.; Sui, L. Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China. Earth sci. res. j. 2020, 24, 373-386.

ABNT

MA, F.; SUI, L. Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 373–386, 2020. DOI: 10.15446/esrj.v24n3.90123. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/90123. Acesso em: 19 ago. 2024.

Chicago

Ma, Fei, y Lichun Sui. 2020. «Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China». Earth Sciences Research Journal 24 (3):373-86. https://doi.org/10.15446/esrj.v24n3.90123.

Harvard

Ma, F. y Sui, L. (2020) «Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China», Earth Sciences Research Journal, 24(3), pp. 373–386. doi: 10.15446/esrj.v24n3.90123.

IEEE

[1]
F. Ma y L. Sui, «Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China», Earth sci. res. j., vol. 24, n.º 3, pp. 373–386, oct. 2020.

MLA

Ma, F., y L. Sui. «Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China». Earth Sciences Research Journal, vol. 24, n.º 3, octubre de 2020, pp. 373-86, doi:10.15446/esrj.v24n3.90123.

Turabian

Ma, Fei, y Lichun Sui. «Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China». Earth Sciences Research Journal 24, no. 3 (octubre 12, 2020): 373–386. Accedido agosto 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/90123.

Vancouver

1.
Ma F, Sui L. Investigation on Mining Subsidence Based on Sentinel-1A Data by SBAS-InSAR technology—Case Study of Ningdong Coalfield, China. Earth sci. res. j. [Internet]. 12 de octubre de 2020 [citado 19 de agosto de 2024];24(3):373-86. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/90123

Descargar cita

CrossRef Cited-by

CrossRef citations9

1. Fei Ma, Lichun Sui, Wei Lian. (2023). Prediction of Mine Subsidence Based on InSAR Technology and the LSTM Algorithm: A Case Study of the Shigouyi Coalfield, Ningxia (China). Remote Sensing, 15(11), p.2755. https://doi.org/10.3390/rs15112755.

2. Zenia Pérez-Falls, Guillermo Martínez-Flores, Olga Sarychikhina. (2022). Land Subsidence Detection in the Coastal Plain of Tabasco, Mexico Using Differential SAR Interferometry. Land, 11(9), p.1473. https://doi.org/10.3390/land11091473.

3. Xuzi Jiang, Xiangyu Min, Tiantian Ye, Xinju Li, Xiao Hu. (2023). Monitoring the subsidence at different periods in high underground water level coal mine areas using differential interferometric synthetic aperture radar (D-InSAR). Geocarto International, 38(1) https://doi.org/10.1080/10106049.2023.2215730.

4. Qiu Du, Guangli Guo, Huaizhan Li, Yaqiang Gong, Tao Wei. (2022). The Stability Analysis Method of Leveling Datum Points in Mining Areas of Western China Based on SBAS-InSAR Technology. KSCE Journal of Civil Engineering, 26(12), p.5264. https://doi.org/10.1007/s12205-022-0635-y.

5. Edier Fernando Ávila, Bibiana Royero Benavides, Gelberth Efren Amarillo. (2024). Identification of Areas with Instability and Surface Deformation: Using Advanced Radar Interferometry in the Municipality of Fusagasugá, Colombia. IV Conference on Geomatics Engineering. , p.19. https://doi.org/10.3390/environsciproc2023028019.

6. Anna Kopec. (2021). Long-term monitoring of the impact of the impact of mining operations on the ground surface at the regional scale based on the InSAR-SBAS technique, the Upper Silesian Coal Basin (Poland). Case study.. Acta Geodynamica et Geomaterialia, , p.93. https://doi.org/10.13168/AGG.2021.0044.

7. Li’ao Quan, Shuanggen Jin, Jianxin Zhang, Junyun Chen, Junjun He. (2024). Subsidence Characteristics in North Anhui Coal Mining Areas Using Space–Air–Ground Collaborative Observations. Sensors, 24(12), p.3869. https://doi.org/10.3390/s24123869.

8. Qingpeng Li, Wenhui Liu, Renjie He, Chunye Ying, Hairui Liu, Zengning Dou, Yabing Liu, Sha Yang, Xianteng Song. (2024). A local rainfall-triggered giant landslide occurred in a region along a high-speed railway on the Qinghai–Tibetan Plateau. Journal of Mountain Science, https://doi.org/10.1007/s11629-023-8408-8.

9. Mingfei Zhu, Xuexiang Yu, Hao Tan, Jiajia Yuan. (2024). Integrated high-precision monitoring method for surface subsidence in mining areas using D-InSAR, SBAS, and UAV technologies. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-63400-5.

Dimensions

PlumX

Visitas a la página del resumen del artículo

526

Descargas

Los datos de descargas todavía no están disponibles.