Publicado

2022-02-07

Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period

Clasificación de sitio de la Red de Acelerógrafos de Costa Rica basada en mediciones de VS30 y en el período fundamental

DOI:

https://doi.org/10.15446/esrj.v25n4.93927

Palabras clave:

Site classification, Site fundamental period, Shear-wave velocity, Costa Rica, HVSR, Vs30 (en)
Clasificación de sitio; período fundamental de sitio; velocidad promedio de la onda de corte; Costa Rica; relaciones horizontales/verticales; Vs30 (es)

Descargas

Autores/as

  • Luis A. Pinzon Ureña Universitat Politècnica de Catalunya
  • Diego A. Hidalgo-Leiva Universidad de Costa Rica
  • Aarón Moya-Fernández Universidad de Costa Rica
  • Victor Schmidt-Díaz Universidad de Costa Rica
  • Luis G. Pujades Universitat Politècnica de Catalunya

In this paper, a new seismic site classification for the Costa Rican Strong-Motion Network (CRSMN) is proposed. The soil profile classification of the Costa Rican Seismic Code based on the average shear-wave velocity of the top 30 m (VS30) is used as a reference. The site fundamental period (Tf) is included as a parameter to complement the existing characterization. For this, the VS30 measurements from 52 accelerometric stations are related to the site fundamental period obtained through horizontal-to-vertical spectral ratios (HVSR) using ground motion records from the Costa Rican Strong-Motion Database. The H/V ratios are estimated with 5% damped acceleration response spectra and with traditional Fourier amplitude spectra from the S-wave window. From the relation between VS30 and Tf, different ranges of Tf are assigned to the existing soil profile classification and a graph with three-lines and four-areas is proposed to classify the stations of the CRSMN.

En este artículo, se propone una nueva clasificación de sitio para la Red de Acelerógrafos de Costa Rica (RACR). Se utiliza como referencia la clasificación de sitio del Código Sísmico de Costa Rica basada en la velocidad promedio de la onda de corte de los 30 m superiores (VS30). El período fundamental del sitio (Tf) se incluye como parámetro para complementar la caracterización existente. Para ello, las mediciones de VS30 de 52 estaciones acelerométricas se relacionan con el período fundamental del sitio, este obtenido a partir de relaciones espectrales H/V utilizando registros de la Base de Datos de Movimiento Fuerte de Costa Rica. Las relaciones H/V se estiman con espectros de respuesta de aceleración con 5% de amortiguamiento y con espectros de amplitud de Fourier tradicionales obtenidos de la ventana de ondas S. A partir de la relación entre VS30 y Tf, fueron asignados diferentes rangos de Tf a la clasificación de perfil de suelo existente y se propone un gráfico con tres líneas y cuatro áreas para clasificar las estaciones de la RACR.

Referencias

Alfaro, A., Pujades, L. G., Goula, X., Susagna, T., Navarro, M., Sanchez, J., & Canas, J. A. (2001). Preliminary map of soil’s predominant periods in Barcelona using microtremors. Pure and Applied Geophysics, 158, 2499–2511. DOI: 10.1007/PL00001182 DOI: https://doi.org/10.1007/PL00001182

ASCE (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16).

BSSC (2003). Building Seismic Safety Council, NEHRP recommended provisions for seismic regulations for new buildings and other structures. Report FEMA-450 (Provisions), Federal Emergency Management Agency (FEMA). Washington D.C., United States

Cadet, H., Macau, A., Benjumea, B., Bellmunt, F., & Figueras, S. (2011) From ambient noise recordings to site effect assessment: The case study of Barcelona microzonation. Soil Dynamics and Earthquake Engineering, 31, 271–281. DOI: 10.1016/j.soildyn.2010.07.005 DOI: https://doi.org/10.1016/j.soildyn.2010.07.005

Caselles, J. O., Pérez-Gracia, V., Franklin, R., Pujades, L. G., Navarro, M., Clapes, J., Canas, J. A., García, F. (2010). Applying the H/V method to dense cities. A case study of Valencia city. Journal of Earthquake Engineering, 14, 192–210. DOI: 10.1080/13632460903086069 DOI: https://doi.org/10.1080/13632460903086069

CFIA (2016). Código Sísmico de Costa Rica 2010 (Revisión 2014). Editorial Tecnológica de Costa Rica, Cartago, Costa Rica.

Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). Predominant-period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America, 102, 680–695. DOI: 10.1785/0120110084 DOI: https://doi.org/10.1785/0120110084

Dobry, R., Borcherdt, R. D., Crouse, C. B., & Idriss, I. M. (2000) New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions. Earthquake Spectra, 16, 41–67. DOI: https://doi.org/10.1193/1.1586082

Douglas, J. (2017). Ground motion prediction equations 1964-2016. Glasgow, UK

Ghasemi, H., Zare, M., Fukushima, Y., & Sinaeian, F. (2009). Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN). Soil Dynamics and Earthquake Engineering, 29, 121–132. DOI: 10.1016/j.soildyn.2008.01.007 DOI: https://doi.org/10.1016/j.soildyn.2008.01.007

Ghofrani, H., Atkinson GM (2014) Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West 2 and Japanese databases. Soil Dynamics and Earthquake Engineering, 67, 30–43. DOI: 10.1016/j.soildyn.2014.08.015 DOI: https://doi.org/10.1016/j.soildyn.2014.08.015

Hassani, B., & Atkinson, G. M. (2016). Applicability of the site fundamental frequency as a VS30 proxy for Central and Eastern North America. Bulletin of the Seismological Society of America, 106, 653–664. DOI: 10.1785/0120150259 DOI: https://doi.org/10.1785/0120150259

Moya-Fernández, A., Pinzón, L. A., Schmidt-Díaz, V., Hidalgo-Leiva, D. A., & Pujades, L. G. (2020). A Strong-Motion Database of Costa Rica: 20 Yr of Digital Records. Seismological Research Letters, 91, 3407–3416. DOI: 10.1785/0220200036 DOI: https://doi.org/10.1785/0220200036

Nagashima, F., Matsushima, S., Kawase, H., Sanchez-Sesma, F. J., Hayakawa, T., Satoh, T., & Oshima, M. (2014). Application of horizontal-to-vertical spectral ratios of earthquake ground motions to identify subsurface structures at and around the K-NET site in Tohoku, Japan. Bulletin of the Seismological Society of America, 104, 2288–2302. DOI: 10.1785/0120130219 DOI: https://doi.org/10.1785/0120130219

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30, 25–33.

Pinzón, L. A., Pujades, L. G., Macau, A., Carreño, E., & Alcalde, J. (2019a). Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database. Geosciences, 9, 294. DOI: 10.3390/geosciences9070294 DOI: https://doi.org/10.3390/geosciences9070294

Pinzón, L. A., Pujades, L. G., Macau, A., & Figueras, S. (2019b). Increased seismic hazard in Barcelona (Spain) due to soil-building resonance effects. Soil Dynamics and Earthquake Engineering, 117, 245–250. DOI: 10.1016/j.soildyn.2018.11.022 DOI: https://doi.org/10.1016/j.soildyn.2018.11.022

Protti, M., Gundell, F., & McNally, K. (1994). The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network. Physics of the Earth and Planetary Interiors, 84, 271–287. DOI: 10.1016/0031-9201(94)90046-9 DOI: https://doi.org/10.1016/0031-9201(94)90046-9

Quintero, R., & Güendel, F. (2000). Stress field in Costa Rica, Central America. Journal of Seismology, 4, 297–319. DOI: 10.1023/A:1009867405248 DOI: https://doi.org/10.1023/A:1009867405248

Steidl, J. H. (2000). Site response in southern California for probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 90, 149–169. DOI: 10.1785/0120000504 DOI: https://doi.org/10.1785/0120000504

Wald, D. J., & Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97, 1379–1395. DOI: 10.1785/0120060267 DOI: https://doi.org/10.1785/0120060267

Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., & Ogawa, H. (2006) An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America, 96, 914–925. DOI: 10.1785/0120050124 DOI: https://doi.org/10.1785/0120050124

Cómo citar

APA

Pinzon Ureña, L. A., Hidalgo-Leiva, D. A., Moya-Fernández , A., Schmidt-Díaz, V. y Pujades, L. G. (2022). Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period. Earth Sciences Research Journal, 25(4), 383–389. https://doi.org/10.15446/esrj.v25n4.93927

ACM

[1]
Pinzon Ureña, L.A., Hidalgo-Leiva, D.A., Moya-Fernández , A., Schmidt-Díaz, V. y Pujades, L.G. 2022. Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period. Earth Sciences Research Journal. 25, 4 (feb. 2022), 383–389. DOI:https://doi.org/10.15446/esrj.v25n4.93927.

ACS

(1)
Pinzon Ureña, L. A.; Hidalgo-Leiva, D. A.; Moya-Fernández , A.; Schmidt-Díaz, V.; Pujades, L. G. Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period. Earth sci. res. j. 2022, 25, 383-389.

ABNT

PINZON UREÑA, L. A.; HIDALGO-LEIVA, D. A.; MOYA-FERNÁNDEZ , A.; SCHMIDT-DÍAZ, V.; PUJADES, L. G. Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period. Earth Sciences Research Journal, [S. l.], v. 25, n. 4, p. 383–389, 2022. DOI: 10.15446/esrj.v25n4.93927. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/93927. Acesso em: 17 ago. 2024.

Chicago

Pinzon Ureña, Luis A., Diego A. Hidalgo-Leiva, Aarón Moya-Fernández, Victor Schmidt-Díaz, y Luis G. Pujades. 2022. «Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period». Earth Sciences Research Journal 25 (4):383-89. https://doi.org/10.15446/esrj.v25n4.93927.

Harvard

Pinzon Ureña, L. A., Hidalgo-Leiva, D. A., Moya-Fernández , A., Schmidt-Díaz, V. y Pujades, L. G. (2022) «Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period», Earth Sciences Research Journal, 25(4), pp. 383–389. doi: 10.15446/esrj.v25n4.93927.

IEEE

[1]
L. A. Pinzon Ureña, D. A. Hidalgo-Leiva, A. Moya-Fernández, V. Schmidt-Díaz, y L. G. Pujades, «Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period», Earth sci. res. j., vol. 25, n.º 4, pp. 383–389, feb. 2022.

MLA

Pinzon Ureña, L. A., D. A. Hidalgo-Leiva, A. Moya-Fernández, V. Schmidt-Díaz, y L. G. Pujades. «Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period». Earth Sciences Research Journal, vol. 25, n.º 4, febrero de 2022, pp. 383-9, doi:10.15446/esrj.v25n4.93927.

Turabian

Pinzon Ureña, Luis A., Diego A. Hidalgo-Leiva, Aarón Moya-Fernández, Victor Schmidt-Díaz, y Luis G. Pujades. «Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period». Earth Sciences Research Journal 25, no. 4 (febrero 7, 2022): 383–389. Accedido agosto 17, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/93927.

Vancouver

1.
Pinzon Ureña LA, Hidalgo-Leiva DA, Moya-Fernández A, Schmidt-Díaz V, Pujades LG. Seismic site classification of the Costa Rican Strong-Motion Network based on VS30 measurements and site fundamental period. Earth sci. res. j. [Internet]. 7 de febrero de 2022 [citado 17 de agosto de 2024];25(4):383-9. Disponible en: https://revistas.unal.edu.co/index.php/esrj/article/view/93927

Descargar cita

CrossRef Cited-by

CrossRef citations3

1. Luis A. Pinzón, Diego A. Hidalgo-Leiva, Rodrigo E. Alva, Miguel A. Mánica, Luis G. Pujades. (2023). Correlation between seismic intensity measures and engineering demand parameters of reinforced concrete frame buildings through nonlinear time history analysis. Structures, 57, p.105276. https://doi.org/10.1016/j.istruc.2023.105276.

2. Diego A. Hidalgo-Leiva, Lepolt Linkimer, Ivonne G. Arroyo, Mario Arroyo-Solórzano, Rosey Piedra, Alvaro Climent, Víctor Schmidt Díaz, Luis Carlos Esquivel, Guillermo E. Alvarado, Rolando Castillo, Marco E. Carranza-Morales, Laura Cerdas-Guntanis, Jimena Escalante-Meza, Sergio Lobo, María José Rodríguez, Wilfredo Rojas. (2023). The 2022 Seismic Hazard Model for Costa Rica. Bulletin of the Seismological Society of America, 113(1), p.23. https://doi.org/10.1785/0120220119.

3. Falak Zahoor, K. Seshagiri Rao, Bashir Ahmed Mir, Neelima Satyam. (2023). Geophysical surveys in the Kashmir valley (J&K Himalayas) part II: Anomalous seismic site-effects and exploration of alternative site classification schemes. Soil Dynamics and Earthquake Engineering, 174, p.108185. https://doi.org/10.1016/j.soildyn.2023.108185.

Dimensions

PlumX

Visitas a la página del resumen del artículo

248

Descargas

Los datos de descargas todavía no están disponibles.