Published
Robust Post-Hoc Multiple Comparisons: Skew t Distributed Error Terms
Compararciones múltiples a posteriori robustas con errores siguendo una t-student sesgada
DOI:
https://doi.org/10.15446/rce.v45n2.100837Keywords:
One-way ANOVA, Post-Hoc Comparison, Skew t distribution, Robustness (en)ANOVA unidireccional, Comparación post-hoc, Distribuci ón t sesgada, Robustez (es)
Downloads
The pairwise comparisons or post-hoc methods are used for determining the source of the difference of group means in one-way ANOVA. These methods are mostly depend on normality assumption. However, nonnormal distributions are more prevalent than normal distribution. Therefore, robust estimation methods become very important tools in statistical analysis. In this paper, we assume that the distribution of the error terms is Azzalini's skew $t$ and obtain the robust estimators in order to make post-hoc tests in one-way ANOVA. We use maximum likelihood (ML) methodology and compare this methodology with some of robust estimators like M estimator, Wave estimator, trimmed mean and modified maximum likelihood (MML) methodology with Monte Carlo simulation study. Simulation results show that the proposed methodology is more preferable. We also compare power values of the test statistics and conclude that the test statistics based on the ML estimators are more powerful than the test statistics based on other methods.
Las comparaciones por pares o métodos post-hoc se utilizan para determinar la fuente de la diferencia de medias de grupo en ANOVA unidireccional. Estos métodos dependen principalmente de la suposición de normalidad. Sin embargo, no normales distribuciones son más frecuentes que la distribución normal. Por lo tanto, los métodos robustos de estimación se convierten en herramientas muy importantes en el análisis estadístico. En este artículo, asumimos que la distribución de los términos de error es la de Azzalini sesgar t y obtener los estimadores robustos para realizar pruebas post-hoc en ANOVA de una vía. Utilizamos la metodología de máxima verosimilitud (ML) y comparamos esta metodología con algunos de los estimadores robustos como el estimador M, estimador de onda, media recortada y máxima verosimilitud modificada (MML) metodología con estudio de simulación Monte Carlo. Los resultados de la simulación muestran que la metodología propuesta es más preferible. También comparamos potencia valores de las estadísticas de prueba y concluimos que las estadísticas de prueba basadas en los estimadores ML son más poderosos que las estadísticas de prueba basadas en otros métodos.
References
Ahmad Radi, N. F., Zakaria, R., Piantadosi, J., Boland, J., Wan Zin, W. Z. & Azman, M. A. (2017), `Generating synthetic rainfall total using multivariate skew-t and checkerboard copula of maximum entropy', Water Resources Management 31(5), 1729-1744. DOI: https://doi.org/10.1007/s11269-017-1597-6
Azzalini, A. & Capitanio, A. (2003), `Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution', Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65(2), 367-389. DOI: https://doi.org/10.1111/1467-9868.00391
Balci, S. & Akkaya, A. D. (2015), `Robust pairwise multiple comparisons under short-tailed symmetric distributions', Journal of Applied Statistics 42(11), 2293-2306. DOI: https://doi.org/10.1080/02664763.2015.1023706
Beranger, B., Stephenson, A. G. & Sisson, S. A. (2021), `High-dimensional inference using the extremal skew-t process', Extremes 24(3), 653-685. DOI: https://doi.org/10.1007/s10687-020-00376-1
Celik, N. (2012), Robust statistical inference in ANOVA models using skew distributions and applications, Ph. D. thesis, Ankara University Graduate School of Natural and Applied.
Dunnett, C. W. (1982), `Robust multiple comparisons', Communications in Statistics-Theory and Methods 11(22), 2611-2629. DOI: https://doi.org/10.1080/03610928208828410
Nakajima, J. (2017), `Bayesian analysis of multivariate stochastic volatility with skew return distribution', 5(36), 546-562. DOI: https://doi.org/10.1080/07474938.2014.977093
Ringland, J. T. (1983), `Robust multiple comparisons', Journal of the American Statistical Association 78(381), 145-151. DOI: https://doi.org/10.1080/01621459.1983.10477943
Tagle, F., Castruccio, S., Crippa, P. & Genton, M. G. (2019), `A non-gaussian spatio-temporal model for daily wind speeds based on a multi-variate skew-t distribution', Journal of Time Series Analysis 40(3), 312-326. DOI: https://doi.org/10.1111/jtsa.12437
Tukey, J. W. & McLaughlin, D. H. (1963), `Less vulnerable con-dence and significance procedures for location based on a single sample: Trimming/winsorization 1', Sankhy a: The Indian Journal of Statistics, Series A pp. 331-352.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).