Published
Robust Circular Logistic Regression Model and Its Application to Life and Social Sciences
Modelo de regresión logística circular robusto y su aplicación a las ciencias de la vida y sociales
DOI:
https://doi.org/10.15446/rce.v46n1.101517Keywords:
Circular data, Circular logistic regression, Maximum likelihood estimation, Multinomial circular logistic regression, Robustness (en)Datos circulares, Regresión logística circular, Regresión logística circular multinomial, Estimación de máxima verosimilitud, Robustez (es)
Downloads
This paper presents robust estimators for binary and multinomial circular logistic regression, where a circular predictor is related to the response. An extensive Monte Carlo Simulation Study clearly shows the robustness of proposed methods. Finally, three numerical examples of Botany, Crime and Meteorology illustrate the application of these methods to Life and Social Sciences. Although in the Botany data the proposed method showed little improvement, in the Crime and Meteorological data an increment up to 5\% and 4\% of accuracy, respectively, is achieved.
Este artículo presenta estimadores robustos para el modelo de regresión logística circular binomial y mutinomial. Un estudio de Monte Carlo muestra la robustez de los métodos propuestos. Finalmente, tres ejemplos numéricos en botánica, criminalística y meteorología muestran la aplicación de estos modelos a las Ciencias.
References
Abuzaid, A. H. & Allahham, N. R. (2015), 'Simple circular regression model assuming wrapped cauchy error', Pakistan Journal of Statistics 31(4).
Al-Daffaie, K. & Khan, S. (2017), Logistic regression for circular data, in 'AIP Conference Proceedings', vol. 1842, AIP Publishing LLC, p. 030022. DOI: https://doi.org/10.1063/1.4982860
Alshqaq, S. S., Ahmadini, A. A. & Abuzaid, A. H. (2021), 'Some new robust estimators for circular logistic regression model with applications on meteorological and ecological data', Mathematical Problems in Engineering 2021. DOI: https://doi.org/10.1155/2021/9944363
Ashby, M. P. (2019), 'Studying crime and place with the crime open database: Social and behavioural scienes', Research Data Journal for the Humanities and Social Sciences 4(1), 65-80. DOI: https://doi.org/10.1163/24523666-00401007
Bell, K. (2008), Analysing Cycles in Biology and Medicine-a practical introduction to circular variables & periodic regression, Razorbill Press, St. John's.
Berkson, J. (1944), 'Application of the logistic function to bio-assay', Journal of the American statistical association 39(227), 357-365. DOI: https://doi.org/10.1080/01621459.1944.10500699
Castilla, E. (2022), 'Robust estimation of the spherical normal distribution', Mathematica Applicanda 50(1), 43-63. DOI: https://doi.org/10.14708/ma.v50i1.7119
Castilla, E. & Chocano, P. J. (2022), 'A new robust approach for multinomial logistic regression with complex design model', IEEE Transactions on Information Theory 68(11), 7379-7395. DOI: https://doi.org/10.1109/TIT.2022.3187063
Chianucci, F., Pisek, J., Raabe, K., Marchino, L., Ferrara, C. & Corona, P. (2018), 'A dataset of leaf inclination angles for temperate and boreal broadleaf woody species', Annals of Forest Science 75(2), 1-7. DOI: https://doi.org/10.1007/s13595-018-0730-x
Cressie, N. & Read, T. R. (1984), 'Multinomial goodness-of-fit tests', Journal of the Royal Statistical Society: Series B (Methodological) 46(3), 440-464. DOI: https://doi.org/10.1111/j.2517-6161.1984.tb01318.x
Gill, J. & Hangartner, D. (2010), 'Circular data in political science and how to handle it', Political Analysis 18(3), 316-336. DOI: https://doi.org/10.1093/pan/mpq009
Hauberg, S. (2018), Directional statistics with the spherical normal distribution, in '2018 21st International Conference on Information Fusion (FUSION)', IEEE, pp. 704-711. DOI: https://doi.org/10.23919/ICIF.2018.8455242
Jones, M. & Pewsey, A. (2012), 'Inverse Batschelet distributions for circular data', Biometrics 68(1), 183-193. DOI: https://doi.org/10.1111/j.1541-0420.2011.01651.x
Kibiak, T. & Jonas, C. (2007), 'Applying circular statistics to the analysis of monitoring data', European Journal of Psychological Assessment 23(4), 227-237. DOI: https://doi.org/10.1027/1015-5759.23.4.227
Kullback, S. & Leibler, R. A. (1951), 'On information and suficiency', The Annals of Mathematical Statistics 22(1), 79-86. DOI: https://doi.org/10.1214/aoms/1177729694
Landler, L., Ruxton, G. D. & Malkemper, E. P. (2018), 'Circular data in biology: advice for effectively implementing statistical procedures', Behavioral ecology and sociobiology 72(8), 1-10. DOI: https://doi.org/10.1007/s00265-018-2538-y
Lindsay, B. G. (1994), 'Eficiency versus robustness: the case for minimum Hellinger distance and related methods', The annals of statistics 22(2), 1081-1114. DOI: https://doi.org/10.1214/aos/1176325512
Mardia, K. & Zemroch, P. (1975), 'Algorithm AS 86: The von Mises distribution function', Journal of the Royal Statistical Society. Series C (Applied Statistics) 24(2), 268-272. DOI: https://doi.org/10.2307/2346578
Morel, J. G. (1989), 'Logistic regression under complex survey designs', Survey Methodology 15(2), 203-223.
Open Data (2019), 'Portale open data della regione siciliana'. https://dati.regione.sicilia.it/
Rousseeuw, P. J., Hampel, F. R., Ronchetti, E. M. & Stahel, W. A. (2011), Robust statistics: the approach based on influence functions, John Wiley & Sons.
SenGupta, A. & Ugwuowo, F. I. (2006), 'Asymmetric circular-linear multivariate regression models with applications to environmental data', Environmental and Ecological Statistics 13(3), 299-309. DOI: https://doi.org/10.1007/s10651-005-0013-1
Skinner, C. J. et al. (1992), 'Pseudo-likelihood and quasi-likelihood estimation for complex sampling schemes', Computational statistics & data analysis 13(4), 395-405. DOI: https://doi.org/10.1016/0167-9473(92)90114-U
Uemura, M., Meglic, A., Zalucki, M. P., Battisti, A. & Belusic, G. (2021), 'Spatial orientation of social caterpillars is influenced by polarized light', Biology Letters 17(2), 20200736. DOI: https://doi.org/10.1098/rsbl.2020.0736
Wolpert, N. & Tallon-Baudry, C. (2021), 'Coupling between the phase of a neural oscillation or bodily rhythm with behavior: Evaluation of different statistical procedures', NeuroImage 236, 118050. DOI: https://doi.org/10.1016/j.neuroimage.2021.118050
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Elena Castilla, Abhik Ghosh. (2023). Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model. Entropy, 25(10), p.1422. https://doi.org/10.3390/e25101422.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).