Published
Imputation of Missing Data Through Product Type Exponential Methods in Sampling Theory
Imputación de datos faltantes a través de métodos exponenciales de tipo de producto en la teoría del muestreo
DOI:
https://doi.org/10.15446/rce.v46n1.102308Keywords:
Auxiliary variable, Product type estimator, Imputation (en)Variable auxiliar, Estimador de tipo de producto, Imputación (es)
Downloads
Some efficient product type exponential imputation methods are proposed in this article to tackle the problem of incomplete values in sampling theory. To investigate the effectiveness of proposed exponential methods, the behaviours of the considered estimators are compared in two scenarios: with and without nonresponse. The simulation studies show that the proposed resultant estimators outperform other existing estimators in this literature.
En este artículo se proponen algunos métodos eficientes de imputación exponencial de tipo de producto para abordar el problema de los valores incompletos en la teoría del muestreo. Para investigar la efectividad de los métodos exponenciales propuestos, se comparan los comportamientos de los estimadores considerados en dos escenarios: con y sin falta de respuesta. Los estudios de simulación muestran que los estimadores resultantes propuestos superan a otros estimadores existentes en esta literatura.
References
Ahmed, M., Al-Titi, O., Al-Rawi, Z. & Abu-Dayyeh, W. (2006), 'Estimation of a population mean using different imputation methods', Statistics in Transition 7(6), 1247-1264.
Diana, G. & Francesco Perri, P. (2010), 'Improved estimators of the population mean for missing data', Communications in Statistics-Theory and Methods 39(18), 3245-3251. DOI: https://doi.org/10.1080/03610920903009400
Gira, A. A. (2015), 'Estimation of population mean with a new imputation methods', Applied Mathematical Sciences 9(34), 1663-1672. DOI: https://doi.org/10.12988/ams.2015.5293
Heitjan, D. F. & Basu, S. (1996), 'Distinguishing missing at random and missing completely at random', The American Statistician 50(3), 207-213. DOI: https://doi.org/10.1080/00031305.1996.10474381
Hyunshik Lee, E. R. & Särndal, C. E. (1994), 'Experiments with variance estimation from survey data with imputed values', Journal of oficial Statistics 10(3), 231-243.
Kadilar, C. & Cingi, H. (2008), 'Estimators for the population mean in the case of missing data', Communications in Statistics-Theory and Methods 37(14), 2226-2236. DOI: https://doi.org/10.1080/03610920701855020
Lee, H., Rancourt, E. & Sarndal, C. (1995), 'Variance estimation in the presence of imputed data for the generalized estimation system', American Statistical Association (Social Survey Research Methods Section) pp. 384-389.
Pandey, B. & Dubey, V. (1988), 'Modified product estimator using coefficient of variation of auxiliary variate', Assam Statistical Rev 2(2), 64-66.
Prasad, S. (2017), 'Ratio exponential type estimators with imputation for missing data in sample surveys', Model Assisted Statistics and Applications 12(2), 95-106. DOI: https://doi.org/10.3233/MAS-170386
Prasad, S. (2018a), 'Product exponential method of imputation in sample surveys', Statistics in Transition. New Series 19(1), 159-166. DOI: https://doi.org/10.21307/stattrans-2018-010
Prasad, S. (2018b), 'A study on new methods of ratio exponential type imputation in sample surveys', Hacettepe Journal of Mathematics and Statistics 47(5), 1281-1301.
Prasad, S. (2019), 'Exponential method of imputation for non-response in sample surveys', Pakistan Journal of Statistics 35(2), 97-107.
Prasad, S. (2021), 'Some compromised exponential ratio type imputation methods in simple random sampling', Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91(2), 337-349. DOI: https://doi.org/10.1007/s40010-020-00719-4
Sande, I. G. (1979), 'A personal view of hot-deck imputation procedures', Survey Methodology 5(2), 238-258.
Singh, G., Maurya, S., Khetan, M. & Kadilar, C. (2016), 'Some imputation methods for missing data in sample surveys', Hacettepe Journal of Mathematics and Statistics 45(6), 1865-1880.
Singh, G., Priyanka, K., Kim, J.-M. & Singh, S. (2010), 'Estimation of population mean using imputation techniques in sample surveys', Journal of the Korean Statistical Society 39(1), 67-74. DOI: https://doi.org/10.1016/j.jkss.2009.04.002
Singh, R. & Mangat, N. S. (2013), Elements of survey sampling, Vol. 15, Springer Science & Business Media.
Singh, S. (2003), Advanced Sampling Theory With Applications: How Michael Selected Amy, Vol. 2, Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-007-0789-4
Singh, S. (2009), 'A new method of imputation in survey sampling', Statistics 43(5), 499-511. DOI: https://doi.org/10.1080/02331880802605114
Singh, S. & Deo, B. (2003), 'Imputation by power transformation', Statistical Papers 44(4), 555-579. DOI: https://doi.org/10.1007/BF02926010
Singh, S. & Horn, S. (2000), 'Compromised imputation in survey sampling', Metrika 51(3), 267-276. DOI: https://doi.org/10.1007/s001840000054
Team, R. C. et al. (2021), 'R: A language and environment for statistical computing'. http://www. R-project. org/
Toutenburg, H., Srivastava, V. et al. (2008), 'Amputation versus imputation of missing values through ratio method in sample surveys', Statistical Papers 49(2), 237-247. DOI: https://doi.org/10.1007/s00362-006-0009-4
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Shashi Bhushan, Anoop Kumar, Rohini Pokhrel. (2024). Estimation of Domain Mean Using General Class of Imputation Methods. Sankhya B, 86(2), p.506. https://doi.org/10.1007/s13571-024-00335-x.
2. Anoop Kumar, Shashi Bhushan, Shivam Shukla, Ibrahim M. Almanjahie, M.J.S. Khan, Amer Ibrahim Al-Omari. (2024). On some robust imputation methods in presence of correlated measurement errors with real data applications. Alexandria Engineering Journal, 104, p.136. https://doi.org/10.1016/j.aej.2024.05.112.
3. Vinay Kumar Yadav, Shakti Prasad. (2024). Neutrosophic Estimators for Estimating the Population Mean in Survey Sampling. Measurement: Interdisciplinary Research and Perspectives, 22(4), p.373. https://doi.org/10.1080/15366367.2023.2267835.
4. Anoop Kumar, Shashi Bhushan, Abdullah Mohammed Alomair. (2024). Optimal class of memory type imputation methods for time-based surveys using EWMA statistics. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-73518-1.
5. Shashi Bhushan, Anoop Kumar, Rohini Pokhrel. (2024). Synthetic imputation methods for domain mean under simple random sampling. Franklin Open, 7, p.100101. https://doi.org/10.1016/j.fraope.2024.100101.
6. Vinay Kumar Yadav, Shakti Prasad. (2025). Some new efficient linear regression ratio type estimators for estimating the population mean in sampling theory. Boletim da Sociedade Paranaense de Matemática, 43, p.1. https://doi.org/10.5269/bspm.68413.
7. Anoop Kumar, Shashi Bhushan, Walid Emam, Yusra Tashkandy, M. J. S. Khan. (2024). Novel logarithmic imputation procedures using multi auxiliary information under ranked set sampling. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-68940-4.
8. Vinay Kumar Yadav, Shakti Prasad. (2024). Generalized class of factor type exponential imputation techniques for population mean using simulation approach. Journal of Statistical Computation and Simulation, 94(9), p.1997. https://doi.org/10.1080/00949655.2024.2310699.
9. Shashi Bhushan, Anoop Kumar, Rohini Pokhrel, M. E. Bakr, Getachew Tekle Mekiso. (2024). Design based synthetic imputation methods for domain mean. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-53909-0.
10. Vinay Kumar Yadav, Shakti Prasad, Subhash Kumar Yadav. (2025). Generalized factor-type exponential estimators of population mean in sample surveys. Boletim da Sociedade Paranaense de Matemática, 43, p.1. https://doi.org/10.5269/bspm.66504.
11. Vinay Kumar Yadav, Shakti Prasad. (2023). A simulation based optimization of factor-type exponential estimators in sample surveys with coefficients of variation and kurtosis. Franklin Open, 5, p.100050. https://doi.org/10.1016/j.fraope.2023.100050.
12. Shashi Bhushan, Anoop Kumar. (2025). Ranked set sampling imputation methods in presence of correlated measurement errors. Communications in Statistics - Theory and Methods, 54(6), p.1895. https://doi.org/10.1080/03610926.2024.2352031.
13. Anoop Kumar, Shashi Bhushan. (2025). Logarithmic imputation techniques for temporal surveys: a memory-based approach explored through simulation and real-life applications. Quality & Quantity, https://doi.org/10.1007/s11135-025-02096-9.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).