Published

2023-07-12

The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications

La familia de distribuciones tipo II exponenciada media logística-Marshall-Olkin-G con aplicaciones

DOI:

https://doi.org/10.15446/rce.v46n2.103163

Keywords:

Marshall-Olkin-G distribution, Maximum likelihood estimation, Simulations, Type II exponentiated half logistic distribution (en)
Distribución Marshall-Olkin-G, Estimación de máxima verosimilitud, Simulaciones, Tipo II distribución semilogística exponencial (es)

Downloads

Authors

  • Broderick Oluyede Botswana International University of Science and Technology
  • Morongwa Gabanakgosi Botswana International University of Science & Technology, Department of Mathematics & Statistical Sciences https://orcid.org/0000-0002-0207-7795

A new generalized family of distributions called the type II exponentiated half logistic-Marshall-Olkin-G distribution is developed. Some special cases of the new model are presented. We explore some statistical properties of the new family of distributions. The statistical properties studied include expansion of the density function, hazard rate and quantile functions, moments, moment generating functions, probability weighted moments, stochastic ordering, distribution of order statistics and Rényi entropy. The maximum likelihood, ordinary and weighted least-squares techniques for the estimation of model parameters are presented, and Monte Carlo simulations for the new family of distributions are conducted. The importance of the new family of distributions is examined by means of applications to two real data sets.

Se desarrolla una nueva familia generalizada de distribuciones denominada distribución media exponenciada tipo II-Marshall-Olkin-G logística. Se presentan algunos casos especiales del nuevo modelo. Exploramos algunas propiedades estadísticas de la nueva familia de distribuciones. Las propiedades estadísticas estudiadas incluyen la expansión de la función de densidad, la tasa de riesgo y las funciones de cuantiles, momentos, funciones generadoras de momentos, momentos ponderados de probabilidad, ordenamiento estocástico, distribución de estadísticas de orden y entropía R\'enyi. Se utiliza la técnica de máxima verosimilitud para estimar los parámetros del modelo y se presentan simulaciones Monte Carlo para la nueva familia de distribuciones. Se examina la importancia de la nueva familia de distribuciones mediante aplicaciones a dos conjuntos de datos reales.

References

Afify, A. Z. & Alizadeh, M. (2020), ‘The odd Dagum family of distributions: properties and applications’, Journal of Applied Probability and Statistics 15(1), 45–72.

Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE transactions on automatic control 19(6), 716–723. DOI: https://doi.org/10.1109/TAC.1974.1100705

Al-Mofleh, H., Elgarhy, M., Afify, A. & Zannon, M. (2020), ‘Type II exponentiated half logistic generated family of distributions with applications’, Electronic Journal of Applied Statistical Analysis 13(2), 536–561.

Al-Shomrani, A., Arif, O., Shawky, A., Hanif, S. & Shahbaz, M. Q. (2016), ‘Topp-Leone family of distributions: Some properties and application’, Pakistan Journal of Statistics and Operation Research pp. 443–451. DOI: https://doi.org/10.18187/pjsor.v12i3.1458

Alizadeh, M., Cordeiro, G. M., Brito, E. & Demetrio, C. G. (2015), ‘The beta Marshall-Olkin family of distributions’, Journal of Statistical Distributions and Applications 2(1), 1–18. DOI: https://doi.org/10.1186/s40488-015-0027-7

Alzaatreh, A., Lee, C. & Famoye, F. (2013), ‘A new method for generating families of continuous distributions’, Metron 71(1), 63–79. DOI: https://doi.org/10.1007/s40300-013-0007-y

Barreto-Souza, W., Lemonte, A. J. & Cordeiro, G. M. (2013), ‘General results for the Marshall and Olkin’s family of distributions’, Anais da Academia Brasileira de Ciencias 85, 3–21. DOI: https://doi.org/10.1590/S0001-37652013000100002

Bourguignon, M., Silva, R. B. & Cordeiro, G. M. (2014), ‘The Weibull-G family of probability distributions’, Journal of Data Science 12(1), 53–68. DOI: https://doi.org/10.6339/JDS.201401_12(1).0004

Bozdogan, H. (1987), ‘Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions’, Psychometrika 52(3), 345–370. DOI: https://doi.org/10.1007/BF02294361

Chakravarti, I. M., Laha, R. G. & Roy, J. (1967), ‘Handbook of methods of applied statistics’, Wiley Series in Probability and Mathematical Statistics.

Chambers, J., Cleveland, W., Kleiner, B. & Tukey, J. (1983), Graphical Methods for Data Analysis, Chapman and Hall, London.

Chen, G. & Balakrishnan, N. (1995), ‘A general purpose approximate goodness of-fit test’, Journal of Quality Technology 27(2), 154–161. DOI: https://doi.org/10.1080/00224065.1995.11979578

Chipepa, F., Oluyede, B. & Makubate, B. (2020), ‘The Topp-Leone Marshall-Olkin-G family of distributions with applications’, International Journal of Statistics and Probability 9(4), 15–32. DOI: https://doi.org/10.5539/ijsp.v9n4p15

Cordeiro, G. M., Alizadeh, M. & Ortega, E. M. (2014), ‘The exponentiated half logistic family of distributions: Properties and applications’, Journal of Probability and Statistics 2014. DOI: https://doi.org/10.1155/2014/864396

Cordeiro, G. M. & de Castro, M. (2011), ‘A new family of generalized distributions’, Journal of Statistical Computation and Simulation 81(7), 883–898. DOI: https://doi.org/10.1080/00949650903530745

Cui, W., Yan, Z. & Peng, X. (2020), ‘A new Marshall-Olkin Weibull Distribution’, Engineering Letters 28(1).

Ghitany, M. E., Al-Hussaini, E. K. & Al-Jarallah, R. A. (2005), ‘Marshall-Olkin extended Weibull distribution and its application to censored data’, Journal of Applied Statistics 32(10), 1025–1034. DOI: https://doi.org/10.1080/02664760500165008

Hassan, A., Elgarhy, M. A. E. & Shakil, M. (2017), ‘Type II half logistic family of distributions with applications’, Pakistan Journal of Statistics and Operation Research 13(2), 245–264.

Lee, E. T. & Wang, J. (2003), Statistical Methods for Survival Data Analysis, Vol. 476, John Wiley & Sons. DOI: https://doi.org/10.1002/0471458546

Marshall, A. W. & Olkin, I. (1997), ‘A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families’, Biometrika 84(3), 641–652. DOI: https://doi.org/10.1093/biomet/84.3.641

Oguntunde, P. E., Balogun, O. S., Okagbue, H. I. & Bishop, S. A. (2015), ‘The Weibull-Exponential distribution: Its properties and applications’, Journal of Applied Sciences 15(11), 1305–1311. DOI: https://doi.org/10.3923/jas.2015.1305.1311

Pakungwati, R., Widyaningsih, Y. & Lestari, D. (2018), ‘Marshall-Olkin extended inverse Weibull distribution and its application’, Journal of physics: conference series 1108(1), 012114. DOI: https://doi.org/10.1088/1742-6596/1108/1/012114

Rannona, K., Oluyede, B., Chipepa, F. & Makubate, B. (2022), ‘The Marshall-Olkin-Type II-Topp-Leone-G Family of Distributions: Model, Properties and Applications’, Journal of Probability and Statistical Science 20(1), 127–149. DOI: https://doi.org/10.37119/jpss2022.v20i1.508

Renyi, A. (1960), On measures of entropy and information, in ‘Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics’, Vol. 4, University of California Press, pp. 547–562.

Ristić, M. M. & Balakrishnan, N. (2012), ‘The gamma-exponentiated exponential distribution’, Journal of statistical computation and simulation 82(8), 1191–1206. DOI: https://doi.org/10.1080/00949655.2011.574633

Schafft, H. A., Staton, T. C., Mandel, J. & Shott, J. D. (1987), ‘Reproducibility of electromigration measurements’, IEEE Transactions on Electron Devices 34(3), 673–681. DOI: https://doi.org/10.1109/T-ED.1987.22979

Schwarz, G. (1978), ‘Estimating the dimension of a model’, The annals of statistics pp. 461–464. DOI: https://doi.org/10.1214/aos/1176344136

Shaked, M. & Shanthikumar, J. G. (2007), Stochastic Orders, Springer, New York. DOI: https://doi.org/10.1007/978-0-387-34675-5

Soliman, A. H., Elgarhy, M. A. E. & Shakil, M. (2017), ‘Type II half logistic family of distributions with applications’, Pakistan Journal of Statistics and Operation Research pp. 245–264. DOI: https://doi.org/10.18187/pjsor.v13i2.1560

Zografos, K. & Balakrishnan, N. (2009), ‘On families of beta and generalized gamma-generated distribution and associated inference’, Statistical Methodology 6(4), 344–362. DOI: https://doi.org/10.1016/j.stamet.2008.12.003

How to Cite

APA

Oluyede, B. and Gabanakgosi, M. (2023). The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications. Revista Colombiana de Estadística, 46(2), 19–53. https://doi.org/10.15446/rce.v46n2.103163

ACM

[1]
Oluyede, B. and Gabanakgosi, M. 2023. The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications. Revista Colombiana de Estadística. 46, 2 (Jul. 2023), 19–53. DOI:https://doi.org/10.15446/rce.v46n2.103163.

ACS

(1)
Oluyede, B.; Gabanakgosi, M. The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications. Rev. colomb. estad. 2023, 46, 19-53.

ABNT

OLUYEDE, B.; GABANAKGOSI, M. The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications. Revista Colombiana de Estadística, [S. l.], v. 46, n. 2, p. 19–53, 2023. DOI: 10.15446/rce.v46n2.103163. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/103163. Acesso em: 28 mar. 2025.

Chicago

Oluyede, Broderick, and Morongwa Gabanakgosi. 2023. “The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications”. Revista Colombiana De Estadística 46 (2):19-53. https://doi.org/10.15446/rce.v46n2.103163.

Harvard

Oluyede, B. and Gabanakgosi, M. (2023) “The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications”, Revista Colombiana de Estadística, 46(2), pp. 19–53. doi: 10.15446/rce.v46n2.103163.

IEEE

[1]
B. Oluyede and M. Gabanakgosi, “The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications”, Rev. colomb. estad., vol. 46, no. 2, pp. 19–53, Jul. 2023.

MLA

Oluyede, B., and M. Gabanakgosi. “The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications”. Revista Colombiana de Estadística, vol. 46, no. 2, July 2023, pp. 19-53, doi:10.15446/rce.v46n2.103163.

Turabian

Oluyede, Broderick, and Morongwa Gabanakgosi. “The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications”. Revista Colombiana de Estadística 46, no. 2 (July 12, 2023): 19–53. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/103163.

Vancouver

1.
Oluyede B, Gabanakgosi M. The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications. Rev. colomb. estad. [Internet]. 2023 Jul. 12 [cited 2025 Mar. 28];46(2):19-53. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/103163

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 1

Article abstract page views

213

Downloads