Published
The Type II Exponentiated Half Logistic-Marshall-Olkin-G Family of Distributions with Applications
La familia de distribuciones tipo II exponenciada media logística-Marshall-Olkin-G con aplicaciones
DOI:
https://doi.org/10.15446/rce.v46n2.103163Keywords:
Marshall-Olkin-G distribution, Maximum likelihood estimation, Simulations, Type II exponentiated half logistic distribution (en)Distribución Marshall-Olkin-G, Estimación de máxima verosimilitud, Simulaciones, Tipo II distribución semilogística exponencial (es)
Downloads
A new generalized family of distributions called the type II exponentiated half logistic-Marshall-Olkin-G distribution is developed. Some special cases of the new model are presented. We explore some statistical properties of the new family of distributions. The statistical properties studied include expansion of the density function, hazard rate and quantile functions, moments, moment generating functions, probability weighted moments, stochastic ordering, distribution of order statistics and Rényi entropy. The maximum likelihood, ordinary and weighted least-squares techniques for the estimation of model parameters are presented, and Monte Carlo simulations for the new family of distributions are conducted. The importance of the new family of distributions is examined by means of applications to two real data sets.
References
Afify, A. Z. & Alizadeh, M. (2020), ‘The odd Dagum family of distributions: properties and applications’, Journal of Applied Probability and Statistics 15(1), 45–72.
Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE transactions on automatic control 19(6), 716–723. DOI: https://doi.org/10.1109/TAC.1974.1100705
Al-Mofleh, H., Elgarhy, M., Afify, A. & Zannon, M. (2020), ‘Type II exponentiated half logistic generated family of distributions with applications’, Electronic Journal of Applied Statistical Analysis 13(2), 536–561.
Al-Shomrani, A., Arif, O., Shawky, A., Hanif, S. & Shahbaz, M. Q. (2016), ‘Topp-Leone family of distributions: Some properties and application’, Pakistan Journal of Statistics and Operation Research pp. 443–451. DOI: https://doi.org/10.18187/pjsor.v12i3.1458
Alizadeh, M., Cordeiro, G. M., Brito, E. & Demetrio, C. G. (2015), ‘The beta Marshall-Olkin family of distributions’, Journal of Statistical Distributions and Applications 2(1), 1–18. DOI: https://doi.org/10.1186/s40488-015-0027-7
Alzaatreh, A., Lee, C. & Famoye, F. (2013), ‘A new method for generating families of continuous distributions’, Metron 71(1), 63–79. DOI: https://doi.org/10.1007/s40300-013-0007-y
Barreto-Souza, W., Lemonte, A. J. & Cordeiro, G. M. (2013), ‘General results for the Marshall and Olkin’s family of distributions’, Anais da Academia Brasileira de Ciencias 85, 3–21. DOI: https://doi.org/10.1590/S0001-37652013000100002
Bourguignon, M., Silva, R. B. & Cordeiro, G. M. (2014), ‘The Weibull-G family of probability distributions’, Journal of Data Science 12(1), 53–68. DOI: https://doi.org/10.6339/JDS.201401_12(1).0004
Bozdogan, H. (1987), ‘Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions’, Psychometrika 52(3), 345–370. DOI: https://doi.org/10.1007/BF02294361
Chakravarti, I. M., Laha, R. G. & Roy, J. (1967), ‘Handbook of methods of applied statistics’, Wiley Series in Probability and Mathematical Statistics.
Chambers, J., Cleveland, W., Kleiner, B. & Tukey, J. (1983), Graphical Methods for Data Analysis, Chapman and Hall, London.
Chen, G. & Balakrishnan, N. (1995), ‘A general purpose approximate goodness of-fit test’, Journal of Quality Technology 27(2), 154–161. DOI: https://doi.org/10.1080/00224065.1995.11979578
Chipepa, F., Oluyede, B. & Makubate, B. (2020), ‘The Topp-Leone Marshall-Olkin-G family of distributions with applications’, International Journal of Statistics and Probability 9(4), 15–32. DOI: https://doi.org/10.5539/ijsp.v9n4p15
Cordeiro, G. M., Alizadeh, M. & Ortega, E. M. (2014), ‘The exponentiated half logistic family of distributions: Properties and applications’, Journal of Probability and Statistics 2014. DOI: https://doi.org/10.1155/2014/864396
Cordeiro, G. M. & de Castro, M. (2011), ‘A new family of generalized distributions’, Journal of Statistical Computation and Simulation 81(7), 883–898. DOI: https://doi.org/10.1080/00949650903530745
Cui, W., Yan, Z. & Peng, X. (2020), ‘A new Marshall-Olkin Weibull Distribution’, Engineering Letters 28(1).
Ghitany, M. E., Al-Hussaini, E. K. & Al-Jarallah, R. A. (2005), ‘Marshall-Olkin extended Weibull distribution and its application to censored data’, Journal of Applied Statistics 32(10), 1025–1034. DOI: https://doi.org/10.1080/02664760500165008
Hassan, A., Elgarhy, M. A. E. & Shakil, M. (2017), ‘Type II half logistic family of distributions with applications’, Pakistan Journal of Statistics and Operation Research 13(2), 245–264.
Lee, E. T. & Wang, J. (2003), Statistical Methods for Survival Data Analysis, Vol. 476, John Wiley & Sons. DOI: https://doi.org/10.1002/0471458546
Marshall, A. W. & Olkin, I. (1997), ‘A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families’, Biometrika 84(3), 641–652. DOI: https://doi.org/10.1093/biomet/84.3.641
Oguntunde, P. E., Balogun, O. S., Okagbue, H. I. & Bishop, S. A. (2015), ‘The Weibull-Exponential distribution: Its properties and applications’, Journal of Applied Sciences 15(11), 1305–1311. DOI: https://doi.org/10.3923/jas.2015.1305.1311
Pakungwati, R., Widyaningsih, Y. & Lestari, D. (2018), ‘Marshall-Olkin extended inverse Weibull distribution and its application’, Journal of physics: conference series 1108(1), 012114. DOI: https://doi.org/10.1088/1742-6596/1108/1/012114
Rannona, K., Oluyede, B., Chipepa, F. & Makubate, B. (2022), ‘The Marshall-Olkin-Type II-Topp-Leone-G Family of Distributions: Model, Properties and Applications’, Journal of Probability and Statistical Science 20(1), 127–149. DOI: https://doi.org/10.37119/jpss2022.v20i1.508
Renyi, A. (1960), On measures of entropy and information, in ‘Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics’, Vol. 4, University of California Press, pp. 547–562.
Ristić, M. M. & Balakrishnan, N. (2012), ‘The gamma-exponentiated exponential distribution’, Journal of statistical computation and simulation 82(8), 1191–1206. DOI: https://doi.org/10.1080/00949655.2011.574633
Schafft, H. A., Staton, T. C., Mandel, J. & Shott, J. D. (1987), ‘Reproducibility of electromigration measurements’, IEEE Transactions on Electron Devices 34(3), 673–681. DOI: https://doi.org/10.1109/T-ED.1987.22979
Schwarz, G. (1978), ‘Estimating the dimension of a model’, The annals of statistics pp. 461–464. DOI: https://doi.org/10.1214/aos/1176344136
Shaked, M. & Shanthikumar, J. G. (2007), Stochastic Orders, Springer, New York. DOI: https://doi.org/10.1007/978-0-387-34675-5
Soliman, A. H., Elgarhy, M. A. E. & Shakil, M. (2017), ‘Type II half logistic family of distributions with applications’, Pakistan Journal of Statistics and Operation Research pp. 245–264. DOI: https://doi.org/10.18187/pjsor.v13i2.1560
Zografos, K. & Balakrishnan, N. (2009), ‘On families of beta and generalized gamma-generated distribution and associated inference’, Statistical Methodology 6(4), 344–362. DOI: https://doi.org/10.1016/j.stamet.2008.12.003
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).