Published
μσ2-Beta and μσ2-Beta Binomial Regression Models
Modelos de regresión μσ2-Beta y μσ2-Beta binomial
DOI:
https://doi.org/10.15446/rce.v46n1.105335Keywords:
Bayesian methods, Mean and variance, Beta binomial distributions, Beta distribution (en)Media y varianza, Distribución beta, Distribución beta binomial, Métodos bayesianos (es)
Downloads
This paper proposes new parameterizations of the beta and beta binomial distributions as functions of the mean and variance parameters. From these new parameterizations, new beta and beta binomial linear regression models are formulated by assuming that appropriate real functions of the mean and variance follow linear regression structures. These models were fitted to real datasets by applying Bayesian methods, using the OpenBUGS software. The new beta regression models were fitted to the Dyslexia Reading Accuracy dataset and the new beta binomial regression models were applied to the School Absenteeism Dataset. In both cases, the results obtained by fitting these models were compared with those obtained by fitting the usual mean and dispersion beta regression models and the mean and dispersion beta binomial regression models, respectively.
Este artículo propone nuevas parametrizaciones de las distribuciones beta y beta binomial como funciones de los parámetros de media y varianza. A partir de estas nuevas parametrizaciones, se formulan nuevos modelos de regresión lineal beta y beta binomial asumiendo que funciones reales apropiadas de la media y la varianza siguen estructuras de regresión lineal. Estos modelos se ajustaron a conjuntos de datos reales mediante la aplicación de métodos bayesianos, utilizando el software OpenBUGS. Los nuevos modelos de regresión beta se ajustaron al conjunto de datos de precisión de lectura de niños con dislexia y los nuevos modelos de regresión beta binomial se aplicaron al conjunto de datos de ausentismo escolar. En ambos casos, los resultados obtenidos ajustando estos modelos se compararon con los obtenidos ajustando los modelos habituales de regresión beta de media y dispersión y los modelos de regresión beta binomial de media y dispersión, respectivamente.
References
Atkinson, A. B. (1970), 'On the measurement of inequality', Journal of Economic Theory 3(32), 244-263. DOI: https://doi.org/10.1016/0022-0531(70)90039-6
Cepeda-Cuervo, E. (2001), Modelagem da Variabilidade em Modelos Lineares Generalizados, Unpublished Ph.D. thesis, Mathematics Institute, Universidade Federal do Rio de Janeiro. URL: http://www.docentes.unal.edu.co/ecepedac/docs/TESISFINAL.pdf.
Cepeda-Cuervo, E. (2015), 'Beta regression models: Joint mean and variance modeling', Revista Colombiana de Estadística 9(1), 134-145. DOI: https://doi.org/10.1080/15598608.2014.890983
Cepeda-Cuervo, E. & Cifuentes-Amado, M. V. (2017), 'Double generalized betabinomial and negative binomial regression models', Revista Colombiana de Estadística (40), 141-163. DOI: https://doi.org/10.15446/rce.v40n1.61779
Cepeda-Cuervo, E. & Garrido, L. (2015), 'Bayesian beta regression models with joint mean and dispersion modeling', Monte Carlo Methods and Applications 21(1), 49-58. DOI: https://doi.org/10.1515/mcma-2014-0007
Cepeda-Cuervo, E. & Núñez Antón, V. (2013), 'Spatial double generalized beta regression models: extensions and application to study quality of education in Colombia', Journal of Educational and Behavioral Statistics 6(38), 604-628. DOI: https://doi.org/10.3102/1076998613499779
Cepeda, E. C. & Achcar, J. A. (2010), 'Heteroscedastic nonlinear regression models', Communications in Statistics-Simulation and Computation 2(39), 405-419. DOI: https://doi.org/10.1080/03610910903480784
Cepeda, E. & Gamerman, D. (2005), 'Bayesian methodology for modeling parameters in the two parameter exponential family', Revista Estadistica 57(168-169), 93-105.
Cribari-Neto, F. & Zeileis, A. (2010), 'Beta regression in R', Journal of Statistical Software (34), 1-24. DOI: https://doi.org/10.18637/jss.v034.i02
Ferrari, S. & Cribari-Neto, F. (2004), 'Beta regression for modelling rates and proportions', Journal of Applied Statistics (31-7), 799-815. DOI: https://doi.org/10.1080/0266476042000214501
Hunger, M., Döring, A. & Holle, R. (2012), 'Longitudinal beta regression models for analyzing health-related quality of life scores over time', BMC medical research methodology 1(12), 1-12. DOI: https://doi.org/10.1186/1471-2288-12-144
Jorgensen, B. (1997), 'Proper dispersion models', Brazilian Journal of Probability and Statistics 11(2), 89-128. http://www.jstor.org/stable/43600934
Paolino, P. (2001), 'Maximum likelihood estimation of models with betadistributed dependent variables', Political Analysis 4(9), 325-346. DOI: https://doi.org/10.1093/oxfordjournals.pan.a004873
Quine, S. (1975), Achievement orientation of aboriginal and white Australian adolescents, Ph.D. thesis, Australia.
Quintero-Sarmiento, A., Cepeda-Cuervo, E. & Nunez-Anton, V. (2012), 'Estimating infant mortality in Colombia: some overdispersion modelling approaches', Journal of Applied Statistics 39(5), 1011-1036. DOI: https://doi.org/10.1080/02664763.2011.634395
Simas, A. B., Barreto-Souza, W. & Rocha, A. V. (2010), 'Improved estimators for a general class of beta regression models', Computational Statistics and Data Analysis 2(54), 348-366. DOI: https://doi.org/10.1016/j.csda.2009.08.017
Smithson, M. & Verkuilen, J. (2006), 'A better lemon squeezer? maximumlikelihood regression with beta-distributed dependent variables', Psychological Methods 1(11), 54. DOI: https://doi.org/10.1037/1082-989X.11.1.54
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Edilberto Cepeda-Cuervo. (2024). Tilted beta regression and beta-binomial regression models: Mean and variance modeling. Communications for Statistical Applications and Methods, 31(3), p.263. https://doi.org/10.29220/CSAM.2024.31.3.263.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).