Published
An Improved Class of Ratio and Product Estimators Based on ORRT Models
Una clase mejorado de estimadores de razones y productos basados en modelos ORRT
DOI:
https://doi.org/10.15446/rce.v47n1.106991Keywords:
Auxiliary variable, Bias, Mean square error (MSE), Non-response, Optional RRT, Sensitive study variables (en)Error cuadrático medio (MSE), Falta de respuesta, Sesgo, TSR opcional, Variables sensibles del estudio, Variable auxiliar (es)
Downloads
In this study, we introduced a problem for the estimation of the population mean of two sensitive variables using ORRT models. A class of estimators has been developed for the estimation of ratio and product estimators. Up to the first degree of approximation, properties of the proposed estimators including bias and mean square error have been studied. To show the efficacy of the proposed class of estimators, we compare it with the conventional estimators and the PRE of the proposed class of estimators is obtained with respect to the usual ratio and product estimator. The simulation study justified that our suggested estimator is more efficient than the existing estimator in terms of having higher PRE.
En este estudio, presentamos un problema para la estimación de la media poblacional de dos variables sensibles utilizando modelos ORRT. Se ha desarrollado una clase de estimadores para la estimación de razón y producto. Hasta el primer grado de aproximación, se han estudiado las propiedades de los estimadores propuestos, incluido el sesgo y el error cuadrático medio. Para mostrar la eficacia de la clase de estimadores propuesta, la comparamos con los estimadores convencionales, y se obtiene el PRE de la clase de estimadores propuesta con respecto al estimador habitual de razón y producto. El estudio de simulación que nuestro estimador sugerido es más eficiente que el estimador existente en términos de tener un PRE más alto.
References
Bouza, C. N., Singh, P. & Singh, R. (2018), `Ranked set sampling and optional scrambling randomized response modeling', Investigacion Operacional 39(1), 100-107.
Chaudhuri, A. & Pal, S. (2015), `On efficacy of empirical bayes estimation of a finite population mean of a sensitive variable through randomized responses', Model Assisted Statistics and Applications 10(4), 283-288. DOI: https://doi.org/10.3233/MAS-150332
Choudhary, M., Kour, S. P., Kumar, S., Bouza, C. N. & Augistin, S. (2023), `Using ORRT models for mean estimation under nonresponse and measurement errors in stratified successive sampling', Journal of Probability and Statistics 2023, 1-17. DOI: https://doi.org/10.1155/2023/1340068
Cochran, W. G. (1940), `The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce', The Journal of Agricultural Science 30(2), 262-275. DOI: https://doi.org/10.1017/S0021859600048012
Cochran, W. G. (1977), Sampling techniques, 3 edn, John Wiley & Sons.
Diana, G. & Perri, P. F. (2011), `A class of estimators for quantitative sensitive data', Statistical Papers 52(3), 633-650. DOI: https://doi.org/10.1007/s00362-009-0273-1
Eichhorn, B. H. & Hayre, L. S. (1983), `Scrambled randomized response methods for obtaining sensitive quantitative data', Journal of Statistical Planning and Inference 7(4), 307-316. DOI: https://doi.org/10.1016/0378-3758(83)90002-2
Fan, W. & Yan, Z. (2010), `Factos affecting response rates of the web surveys: a systematic review', Computers in Human Behaviour 26(2), 132-139. DOI: https://doi.org/10.1016/j.chb.2009.10.015
Foradori, G. T. (1961), `Some non-response sampling theory for two stage designs', Mimeo 297, 1-105.
Gjestvang, C. R. & Singh, S. (2006), `A new randomized response model', Journal of the Royal Statistical Society 68(3), 523-530. DOI: https://doi.org/10.1111/j.1467-9868.2006.00554.x
Greenberg, B. G., Kuebler, R. R. J., Abernathy, J. R. & Hovertiz, D. G. (1971), `Application of the randomized response techniques in obtaining quantitative data', Journal of the American Statistical Association 66, 243-250. DOI: https://doi.org/10.1080/01621459.1971.10482248
Gupta, S., Shabbir, J. & Sehra, S. J. (2010), `Mean and sensitivity estimation in optional randomized response models', Journal of Statistical Planning and Inference 140(10), 2870-2874. DOI: https://doi.org/10.1016/j.jspi.2010.03.010
Hansen, M. H. & Hurwitz, W. N. (1946), `The problem of non-response in sample surveys', Journal of the American Statistical Association 41(236), 517-529. DOI: https://doi.org/10.1080/01621459.1946.10501894
Haq, A. & Shabbir, J. (2013), `Improved family of ratio estimators in simple and stratified random sampling', Communication in Statistics: Theory and Methods 42(5), 782-799. DOI: https://doi.org/10.1080/03610926.2011.579377
Kalucha, G., Gupta, S. & Dass, B. K. (2015), `Ratio estimation of finite population mean using optional randomized response models', Journal of Statistical Theory and Practices 9(3), 633-645. DOI: https://doi.org/10.1080/15598608.2014.977982
Khare, B. B. & Srivastava, S. (1997), `Transformed ratio type estimators for the population mean in presence of non-response.', Communication in Statistics - Theory and Methods 26, 1779-1791. DOI: https://doi.org/10.1080/03610929708832012
Koyuncu, N. & Kadilar, C. (2009), `Ratio and product estimators in stratified random sampling', Journal of Statistical Planning and Inference 139(8), 2552-2558. DOI: https://doi.org/10.1016/j.jspi.2008.11.009
Kumar, S. & Bhougal, S. (2011), `Estimation of the population mean in presence of non-response', Communications of the Korean Statistical Society 18(1), 1-12. DOI: https://doi.org/10.5351/CKSS.2011.18.4.537
Kumar, S. & Kour, S. P. (2021), `Estimation of sensitive variable in two-phase sampling under measurement error and non-response using ORRT models', Sri Lankan Journal of Applied Statistics 22, 95-122. DOI: https://doi.org/10.4038/sljastats.v22i3.8052
Kumar, S. & Kour, S. P. (2022), `The joint influence of estimation of sensitive variable under measurement error and non-response using ORRT models', Journal of Statistical Computation and Simulation 92(17), 3583-3604. DOI: https://doi.org/10.1080/00949655.2022.2075362
Kumar, S., Kour, S. P., Choudhary, M. & Sharma, R. (2021), `Improved randomized response model for estimating the population proportion', International Journal of Statistical Sciences 21(2), 281-296.
Kumar, S., Kour, S. P., Gupta, R. & Joorel, J. P. S. (2023), `A class of logarithmic type estimator under non-response and measurement error using ORRT models', Journal of Indian Society for Probability and Statistics 24. https://doi.org/10.1007/s41096-023-00156-7 DOI: https://doi.org/10.1007/s41096-023-00156-7
Kumar, S., Kour, S. P. & Zhang, Q. (2023), `An enhanced ratio-cum-product estimator with non-response and observational error by utilizing ORRT models: a sensitive estimation approach', Journal of Statistical Computation and Simulation 93(5), 818-836. DOI: https://doi.org/10.1080/00949655.2022.2122463
Miller, M. M. & Dillman, D. A. (2011), `Improving response to web and mixed mode survey', Public Opinion Quartely 75(2), 249-269. DOI: https://doi.org/10.1093/poq/nfr003
Murtaza, M., Singh, S. & Hussain, Z. (2020), `An innovative optimal randomized response model using correlated scrambling variables', Journal of Statistical Computation and Simulation 90(15), 2823-2839.
https://doi.org/10.1080/00949655.2020.1791118 DOI: https://doi.org/10.1080/00949655.2020.1791118
Murthy, M. (1964), `Product method of estimation', Sankhya A 26(1), 69-74. http://www.jstor.org/stable/25049308
Qureshi, M. N., Balqees, S. & Hanif, M. (2022), Mean Estimation of Scrambled Responses using Systematic Sampling. preprint doi:10.21203/rs.3.rs-1428946/v1. DOI: https://doi.org/10.21203/rs.3.rs-1428946/v1
Singh, H. P. & Karpe, N. (2009), `On the estimation of ratio and product of two population means using supplementary information in presence of measurement errors', Statistica 69(1), 27-47.
Singh, H. P. & Kumar, S. (2009), `A general procedure of estimating the population mean in the presence of non response under double sampling using auxiliary information', Statistics and Operation Research Transaction 33, 71-84.
Singh, H. P. & Kumar, S. (2011), `Combination of regression and ratio estimate in presence of nonresponse', Brazilian Journal of Probability and Statistics 25(2), 205-217. DOI: https://doi.org/10.1214/10-BJPS117
Singh, H. P. & Mathur, N. (2005), `Estimation of population mean when coefficient of variation is known using scrambled response technique', Journal of Statistical Planning and Inference 131(1), 135-144. DOI: https://doi.org/10.1016/j.jspi.2004.01.002
Singh, M. P. (1965), `On the estimation of ratio and product of the population parameters', Sankhy a: The Indian Journal of Statistics, Series B (1960-2002) 27(3/4), 321-328. http://www.jstor.org/stable/25051553
Sousa, R., Shabbir, J. & Real, P. C. (2010), `Ratio estimation of the mean of a sensitive variable in the presence of auxiliary information', Journal of Statistical Theory and Practices 4(3), 495-507. DOI: https://doi.org/10.1080/15598608.2010.10411999
Srivastava, S. K. & Jhajj, H. S. (1981), `A class of estimators of the population mean in survey sampling using auxiliary information', Biometrika 68, 341-343. DOI: https://doi.org/10.1093/biomet/68.1.341
Warner, S. L. (1965), `Randomized response: a survey technique for eliminating evasive answer bias', Journal of the American Statistical Association 60(309), 63-69. DOI: https://doi.org/10.1080/01621459.1965.10480775
Waseem, Z., Khan, H. & Shabbir, J. (2021), `Generalized exponential type estimator for the mean of sensitive variable in the presence of non-sensitive auxiliary variable', Communications in Statistics - Theory and Methods 50(14), 3477- 3488. https://doi.org/10.1080/03610926.2019.1708399 DOI: https://doi.org/10.1080/03610926.2019.1708399
Yadav, S. K. & Kadilar, C. (2013), `Improved class of ratio and product estimators', Applied Mathematics and Computation 219(22), 10726-10731. DOI: https://doi.org/10.1016/j.amc.2013.04.048
Zhang, Q., Kalucha, G., Gupta, S. & Khalil, S. (2018), `Ratio estimation of the mean under RRT models', Journal of Statistics and Managements Systems 22(1), 97-113. DOI: https://doi.org/10.1080/09720510.2018.1533513
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).