Published

2024-01-01

AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA

AovBay: Un paquete de R para la aplicación y visualización de análisis de varianza paramétrico, no paramétrico y bayesiano

DOI:

https://doi.org/10.15446/rce.v47n1.108065

Keywords:

ANOVA, Bayesian, Non-parametric, Parametric, R Software (en)
NOVA, Bayesiano, No paramétrico, Paramétrico, Software R (es)

Downloads

Authors

  • Johny Javier Pambabay Calero Polytechnic University
  • Mauricio J Rojas-Campuzano Polytechnic University
  • Sergio A. Bauz-Olvera Polytechnic University
  • Omar H. Ruiz-Barzola Polytechnic University

The analysis of variance is a statistical technique widely used in the design of experiments and different research areas. It has been modeled using a classical or frequentist approach. With the computational power that is currently available, the Bayesian approach is an essential statistical tool related to hypothesis testing. However, conformity with classical techniques, ignorance of Bayesian statistics, and lack of easy-to-use software are obstacles to its frequent application. In this work, the use of a reproducible statistical package in R is proposed. It presents options to perform an analysis of variance in a classical (frequentist) and Bayesian way when the assumptions of the frequentist approach are not met or when a level of more specific inference such as quantifying the evidence provided by a data set for a given hypothesis, with the possibility of contributing to the understanding of the rejection or not of the statistical hypotheses raised, through interactive graphics presented in an emerging Shiny panel.

El análisis de varianza es una técnica estadística ampliamente utilizada en el diseño de experimentos y diferentes áreas de investigación. Ha sido modelado utilizando un enfoque clásico o frecuentista. Con el poder computacional que se tiene actualmente, el enfoque bayesiano es una herramienta estadística esencial relacionada con las pruebas de hipótesis. Sin embargo, la conformidad con técnicas clásicas, el desconocimiento de la estadística bayesiana y la falta de software fácil de usar son obstáculos para su aplicación frecuente. En este trabajo, se propone el uso de un paquete estadístico reproducible en R. Presenta opciones para realizar un análisis de varianza de manera clásica (frecuentista) y bayesiana cuando no se cumplen los supuestos del enfoque frecuentista o cuando se requiere un nivel de inferencia más específico, como cuantificar la evidencia proporcionada por un conjunto de datos para una hipótesis dada, con la posibilidad de contribuir a la comprensión del rechazo o no de las hipótesis estadísticas planteadas, a través de gráficos interactivos presentados en un panel Shiny emergente.

References

Aslam, M. (2020), 'Design of the bartlett and hartley tests for homogeneity of variances under indeterminacy environment', Journal of Taibah University for Science 14(1), 6-10. https://doi.org/10.1080/16583655.2019.1700675 DOI: https://doi.org/10.1080/16583655.2019.1700675

Barnett, V., Lewis, T. et al. (1994), Outliers in statistical data, Vol. 3, Wiley New York.

Checa-Artos, M., del Castillo, D. S., Eulalia, V. M., Ruiz-Barzola, O. & Barcos-Arias, M. (2021), 'Remoción de cinco productos farmacéuticos catalogados como contaminantes emergentes en medio acuoso utilizando la especie vetiver (Chrysopogon zizanioides)', Bionatura 6(1). http://dx.doi.org/10.21931/RB/2021.06.01.7 DOI: https://doi.org/10.21931/RB/2021.06.01.7

Collyer, M. L. & Adams, D. C. (2018), 'RRPP: An R package for fitting linear models to high-dimensional data using residual randomization', Methods in Ecology and Evolution 9(7), 1772-1779. DOI: https://doi.org/10.1111/2041-210X.13029

Duller, C. & Vorhauer, D. (2020), Comparison of four nonparametric tests of symmetry, in 'Actas de la conferencia AIP', Vol. 2293, AIP Publishing LLC, p. 420110. DOI: https://doi.org/10.1063/5.0026685

Flegal, J. M., Haran, M. & Jones, G. L. (2008), 'Markov chain Monte Carlo: Can we trust the third significant figure?', Statistical Science 23(2), 250-260. http://www.jstor.org/stable/27645897 DOI: https://doi.org/10.1214/08-STS257

Flores, E., Miranda, M. G. & Ángel Villasís, M. (2017), 'El protocolo de investigación VI: cómo elegir la prueba estadística adecuada. estadística inferencial', 64(3), 364-370. https://doi.org/10.29262/ram.v64i3.304 DOI: https://doi.org/10.29262/ram.v64i3.304

Gandica de Roa, E. M. (2020), 'Potencia y robustez en pruebas de normalidad con simulación montecarlo', Revista Scientific 5(18), 108-119. DOI: https://doi.org/10.29394/Scientific.issn.2542-2987.2020.5.18.5.108-119

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013), Bayesian Data Analysis, Chapman and Hall/CRC. DOI: https://doi.org/10.1201/b16018

Goodman, S. N. (1999), 'Toward evidence-based medical statistics. 2: The bayes factor', Annals of Internal Medicine 130(12), 1005-1013. PMID: 10383350. DOI: https://doi.org/10.7326/0003-4819-130-12-199906150-00019

Guillen, F. G. F. & Chaparro, J. B. (2021), 'Análisis bayesiano del compromiso académico en estudiantes de psicología: diferencias según sexo y edad', Revista de investigación en psicología 24(1), 5-18. DOI: https://doi.org/10.15381/rinvp.v24i1.20210

Jiménez-Paneque, R. (2016), 'El valor de p en entredicho: significación estadística, clínica y práctica', Medwave 16(08). DOI: https://doi.org/10.5867/medwave.2016.08.6534

Kozak, M. & Piepho, H.-P. (2018), 'What's normal anyway? residual plots are more telling than significance tests when checking ANOVA assumptions', Journal of Agronomy and Crop Science 204(1), 86- 98. https://onlinelibrary.wiley.com/doi/abs/10.1111/jac.12220 DOI: https://doi.org/10.1111/jac.12220

Li, Z., Huang, M., Meng, X. & Ge, X. (2020), 'The limit theorems for function of markov chains in the environment of single infinite markovian systems', Mathematical Problems in Engineering 2020. https://doi.org/10.1155/2020/8175723 DOI: https://doi.org/10.1155/2020/8175723

Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S. & Corander, J. (2017), 'Fundamentals and recent developments in approximate bayesian computation', Systematic biology 66(1), e66-e82. DOI: https://doi.org/10.1093/sysbio/syw077

Morey, R. D. & Rouder, J. N. (2018), Bayes Factor: Computation of Bayes Factors for Common Designs. R package version 0.9.12-4.2. https://CRAN.Rproject.org/package=BayesFactor

Ostertagova, E., Ostertag, O. & Ková£, J. (2014), 'Methodology and application of the Kruskal - wallis test', Applied Mechanics and Materials 611, 115-120. DOI: https://doi.org/10.4028/www.scientific.net/AMM.611.115

Ostertagova, Eva, Ostertag & Oskar (2013), 'Methodology and application of one-way ANOVA', American Journal of Mechanical Engineering 1, 256_261.

Pambabay-Calero, J., Bauz-Olvera, S., Nieto- Librero, A. B., Galindo-Villardón, M. P. & Sánchez-García, A. B. (2020), 'A tutorial for meta-analysis of diagnostic tests for low-prevalence diseases: Bayesian models and software', Methodology 16(3), 258-277. DOI: https://doi.org/10.5964/meth.4015

Pambabay - Calero, J., Bauz-Olvera, S., Nieto-Librero, A., Sánchez-García, A. & Galindo-Villardón, P. (2021), 'Hierarchical modeling for diagnostic test accuracy using multivariate probability distribution functions', Mathematics 9(11). https://www.mdpi.com/2227-7390/9/11/1310 DOI: https://doi.org/10.3390/math9111310

R Core Team (2012), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

Ramos-Vera, C. A. (2021), 'Un aporte del análisis bayesiano en la investigación psicológica', CES Psicología 14(3), 191-194. DOI: https://doi.org/10.21615/cesp.5836

Rendón-Macías, M., Riojas-Garza, A., Contreras-Estrada, D. & Martínez-Ezquerro, J. (2018), 'Análisis bayesiano. conceptos básicos y prácticos para su interpretación y uso', Revista alergia México 65, 285-298. DOI: https://doi.org/10.29262/ram.v65i3.512

Rojas-Campuzano, M. & Pambabay-Calero, J. (2021), Aov Bay: Classic, Nonparametric and Bayesian One-Way Analysis of Variance Panel. R package version 0.1.0. https://CRAN.R-project.org/package=AovBay DOI: https://doi.org/10.32614/CRAN.package.AovBay

Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. (2012), 'Default bayes factors for ANOVA designs', Journal of Mathematical Psychology 56(5), 356-374. https://www.sciencedirect.com/science/article/pii/S0022249612000806 DOI: https://doi.org/10.1016/j.jmp.2012.08.001

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, Wiley Series in Probability and Statistics. DOI: https://doi.org/10.1002/9780470316696

Ruppert, D. (2011), Bayesian Data Analysis and MCMC, Springer New York, pp. 531-578. DOI: https://doi.org/10.1007/978-1-4419-7787-8_20

SAS Institute Inc. (1999), Guía del usuario de SAS / STAT, versión 8., SAS Institute, Cary, NC.

Solari, F., Lis eo, B. & Sun, D. (2008), 'Some remarks on Bayesian inference for one-way ANOVA models', Annals of the Institute of Statistical Mathematics 60, 483-498. DOI: https://doi.org/10.1007/s10463-007-0117-5

Stan Development Team (2020), 'R Stan: The R interface to Stan'. R package version 2.21.2.

http://mc-stan.org/

Stata Corp. (2019), STATA USER'S GUIDE RELEASE 16, Stata Corp LLC., College Station, TX.

van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E.-J., Derks, K., Dablander, F., Gronau, Q. F., Simon Kucharsky, Gupta, A. R. K. N., Sarafoglou, A., Voelkel, J. G., Stefan, A., Ly, A., Hinne, M., Matzke, D. & Wagenmakers, E.-J. (2020), 'A tutorial on conducting and interpreting a bayesian DOI: https://doi.org/10.31234/osf.io/spreb

ANOVA in JASP', L'Année psychologique 120. https://www.cairn.info/revue-lannee-psychologique-2020-1-page-73.htm

Vats, D. & Knudson, C. (2021), 'Revisiting the gelman_rubin diagnostic', Statistical Science 36(4), 518-529. DOI: https://doi.org/10.1214/20-STS812

Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerho_, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Smíra, M., Et, S. E. A., Matzke, D., de Jong, T., van den Bergh, D., Sarafoglou, A., Steingroever, H., Derks, K., Rouder, J. N. & Morey, R. D. (2018), 'Bayesian inference for psychology. part II: Example applications with JASP', Psychonomic Bulletin &. Review 25. https://doi.org/10.3758/s13423-017-1323-7 DOI: https://doi.org/10.3758/s13423-017-1323-7

Wedel, M. & Dong, C. (2020), 'BANOVA: Bayesian analysis of experiments in consumer psychology', Journal of Consumer Psychology 30(1), 3-23. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcpy.1111 DOI: https://doi.org/10.1002/jcpy.1111

Çelik, N. & Senoglu, B. (2018), 'Robust estimation and testing in one-way ANOVA for type II censored samples: skew normal error terms', Journal of Statistical Computation and Simulation 88(7), 1382-1393.

https://doi.org/10.1080/00949655.2018.1433670 DOI: https://doi.org/10.1080/00949655.2018.1433670

How to Cite

APA

Pambabay Calero, J. J., Rojas-Campuzano, M. J., Bauz-Olvera, S. A. and Ruiz-Barzola, O. H. (2024). AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA. Revista Colombiana de Estadística, 47(1), 87–109. https://doi.org/10.15446/rce.v47n1.108065

ACM

[1]
Pambabay Calero, J.J., Rojas-Campuzano, M.J., Bauz-Olvera, S.A. and Ruiz-Barzola, O.H. 2024. AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA. Revista Colombiana de Estadística. 47, 1 (Jan. 2024), 87–109. DOI:https://doi.org/10.15446/rce.v47n1.108065.

ACS

(1)
Pambabay Calero, J. J.; Rojas-Campuzano, M. J.; Bauz-Olvera, S. A.; Ruiz-Barzola, O. H. AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA. Rev. colomb. estad. 2024, 47, 87-109.

ABNT

PAMBABAY CALERO, J. J.; ROJAS-CAMPUZANO, M. J.; BAUZ-OLVERA, S. A.; RUIZ-BARZOLA, O. H. AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA. Revista Colombiana de Estadística, [S. l.], v. 47, n. 1, p. 87–109, 2024. DOI: 10.15446/rce.v47n1.108065. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/108065. Acesso em: 28 mar. 2025.

Chicago

Pambabay Calero, Johny Javier, Mauricio J Rojas-Campuzano, Sergio A. Bauz-Olvera, and Omar H. Ruiz-Barzola. 2024. “AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA”. Revista Colombiana De Estadística 47 (1):87-109. https://doi.org/10.15446/rce.v47n1.108065.

Harvard

Pambabay Calero, J. J., Rojas-Campuzano, M. J., Bauz-Olvera, S. A. and Ruiz-Barzola, O. H. (2024) “AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA”, Revista Colombiana de Estadística, 47(1), pp. 87–109. doi: 10.15446/rce.v47n1.108065.

IEEE

[1]
J. J. Pambabay Calero, M. J. Rojas-Campuzano, S. A. Bauz-Olvera, and O. H. Ruiz-Barzola, “AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA”, Rev. colomb. estad., vol. 47, no. 1, pp. 87–109, Jan. 2024.

MLA

Pambabay Calero, J. J., M. J. Rojas-Campuzano, S. A. Bauz-Olvera, and O. H. Ruiz-Barzola. “AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA”. Revista Colombiana de Estadística, vol. 47, no. 1, Jan. 2024, pp. 87-109, doi:10.15446/rce.v47n1.108065.

Turabian

Pambabay Calero, Johny Javier, Mauricio J Rojas-Campuzano, Sergio A. Bauz-Olvera, and Omar H. Ruiz-Barzola. “AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA”. Revista Colombiana de Estadística 47, no. 1 (January 24, 2024): 87–109. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/108065.

Vancouver

1.
Pambabay Calero JJ, Rojas-Campuzano MJ, Bauz-Olvera SA, Ruiz-Barzola OH. AovBay: An R Package for Application and Visualization of Parametric Non-parametric and Bayesian ANOVA. Rev. colomb. estad. [Internet]. 2024 Jan. 24 [cited 2025 Mar. 28];47(1):87-109. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/108065

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Glenda Pilozo, Mirian Villavicencio-Vásquez, Ivan Chóez-Guaranda, Damon Vera Murillo, Cinthya Duarte Pasaguay, Christofer Tomalá Reyes, Maria Maldonado-Estupiñán, Omar Ruiz-Barzola, Fabián León-Tamariz, Patricia Manzano. (2024). Chemical, antioxidant, and antifungal analysis of oregano and thyme essential oils from Ecuador: Effect of thyme against Lasiodiplodia theobromae and its application in banana rot. Heliyon, 10(10), p.e31443. https://doi.org/10.1016/j.heliyon.2024.e31443.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 2

Article abstract page views

352

Downloads