Published
Addressing Misidentification in Noninvasive DNA Sampling Using Bayesian Approach and Simulations
La identificación errónea en el muestreo de ADN no invasivo abordada mediante modelos bayesianos y simulaciones
DOI:
https://doi.org/10.15446/rce.v47n1.109069Keywords:
Noninvasive DNA sampling, MCMC, Misidentification, Reversibility, Latent individual (en)Muestreo de ADN no invasivo, Reversibilidad, Métodos MCMC, Identificación errónea, Individuos latentes (es)
Downloads
Noninvasive DNA sampling has become increasingly popular in wildlife research and conservation because it allows scientists to gather valuable genetic information without disturbing or harming the animals. However, the correct identification of the species or individuals in the sample is virtually impossible when using this kind of sampling. Consequently, it becomes essential to consider the errors hidding true identities in order to improve the quality of the data. Errors, if left unaddressed, can have a considerable impact on the accuracy of statistical inferences drawn from the data. This paper endeavours to review some research about misidentification problems and how Bayesian models and Markov Chain Monte Carlo (MCMC) methods can be applied. In addition, a hypothetical scenario is presented to illustrate how genetic material can serve as unique identifier of individuals, and to highlight the potential difficulties that may arise if a proposal distribution for the MCMC simulations is inappropriately chosen.
El muestreo de ADN no invasivo se ha vuelto cada vez más popular en la investigación y conservación de vida silvestre, ya que permite a los científicos recopilar información genética valiosa sin perturbar ni lesionar a los animales. Sin embargo, la correcta identificación de la especie o individuos en la muestra es prácticamente imposible cuando se utiliza este tipo de muestreo. En consecuencia, es fundamental considerar los errores que ocultan las verdaderas identidades con el fin de mejorar la calidad de los datos. Si los errores no se abordan, pueden tener un impacto considerable en la precisión de las inferencias estadísticas obtenidas a partir de los datos. Este artículo se propone revisar algunas investigaciones sobre problemas de identificación errónea y cómo se pueden aplicar los modelos bayesianos y los métodos de Monte Carlo basados en cadenas de Markov (MCMC). Además, se presenta un escenario hipotético para ilustrar cómo el material genético puede servir como identificador único de los individuos, y resaltar las dificultades potenciales que pueden surgir si se elige inapropiadamente una distribución de propuestas para las simulaciones de MCMC.
References
Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C. & Stevens, C. (2014), 'Closed-population capture-recapture modeling of samples drawn one at a time', Biometrics 70(4), 775-782. DOI: https://doi.org/10.1111/biom.12241
Berg, N. & Lien, D. (2009), 'Sexual orientation and self-reported lying', Review of Economics of the Household 7(1), 83-104. DOI: https://doi.org/10.1007/s11150-008-9038-1
Biffi, D. & Williams, D. A. (2017), 'Use of non-invasive techniques to determine population size of the marine otter in two regions of Perú', Mammalian Biology 84, 12-19. DOI: https://doi.org/10.1016/j.mambio.2016.12.006
Bran, P. (2018), Properties of Gibbs samplers for inference in genetic markrecapture models, PhD thesis, University of Otago, Dunedin, New Zealand.
Chib, S. & Greenberg, E. (1995), 'Understanding the Metropolis-Hastings algorithm', The American Statistician 49(4), 327-335. DOI: https://doi.org/10.1080/00031305.1995.10476177
Ditmer, M., Vincent, J., Werden, L., Tanner, J., Laske, T., Iaizzo, P., Garshe- lis, D. & Fieberg, J. (2015), 'Bears show a physiological but limited behav- ioral response to unmanned aerial vehicles', Current Biology 25(17), 2278-2283. http://dx.doi.org/10.1016/j.cub.2015.07.024 DOI: https://doi.org/10.1016/j.cub.2015.07.024
Frantz, A. C., Pope, L. C., Carpenter, P. J., Roper, T. J., Wilson, G. J., Delahay, R. J. & Burke, T. (2003), 'Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA', Molecular Ecology 12(6), 1649-1661. DOI: https://doi.org/10.1046/j.1365-294X.2003.01848.x
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2004), Bayesian Data Analysis, Chapman & Hall/CRC, Boca Raton, FL. DOI: https://doi.org/10.1201/9780429258480
Green, P. J. (1995), 'Reversible jump Markov chain Monte Carlo computation and Bayesian model determination', Biometrika 82(4), 711-732. DOI: https://doi.org/10.1093/biomet/82.4.711
Jain, S. & Neal, R. M. (2004), 'A split-merge Markov Chain Monte Carlo pro- cedure for the Dirichlet process mixture model', Journal of Computational and Graphical Statistics 13(1), 158-182. DOI: https://doi.org/10.1198/1061860043001
Lukacs, P. M. & Burnham, K. P. (2005a), 'Estimating population size from DNA- based closed capture-recapture data incorporating genotyping error', The Journal of Wildlife Management 69(1), 396-403. DOI: https://doi.org/10.2193/0022-541X(2005)069<0396:EPSFDC>2.0.CO;2
Lukacs, P. M. & Burnham, K. P. (2005b), 'Review of capture-recapture methods applicable to non-invasive genetic sampling', Molecular Ecology 14(13), 3909- 3919. DOI: https://doi.org/10.1111/j.1365-294X.2005.02717.x
Marucco, F., Vucetich, L. M., Peterson, R. O., Adams, J. R. & Vucetich, J. A. (2012), 'Evaluating the efficacy of non-invasive genetic methods and estimating wolf survival during a ten-year period', Conservation Genetics 13(6), 1611-1622. DOI: https://doi.org/10.1007/s10592-012-0412-4
Mondol, S., Ullas Karanth, K., Samba Kumar, N., Gopalaswamy, A. M., Andheria, A. & Ramakrishnan, U. (2009), 'Evaluation of non-invasive genetic sampling methods for estimating tiger population size', Biological Conservation 142(10), 2350-2360. DOI: https://doi.org/10.1016/j.biocon.2009.05.014
Morin, D. J., Kelly, M. J. & Waits, L. P. (2016), 'Monitoring coyote population dynamics with fecal DNA and spatial capture-recapture', Journal of Wildlife Management 80(5), 824-836. DOI: https://doi.org/10.1002/jwmg.21080
Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. (1978), 'Statistical inference from capture data on closed animal populations', Wildlife Monographs (62), 3-135.
Robert, C. P. & Casella, G. (2004), Monte Carlo statistical methods, Springer, New York. DOI: https://doi.org/10.1007/978-1-4757-4145-2
Roques, S., Furtado, M., Jácomo, A. T. A., Silveira, L., Sollmann, R., Tórres, N. M., Godoy, J. A. & Palomares, F. (2014), 'Monitoring jaguar populations panthera onca with non-invasive genetics: a pilot study in brazilian ecosystems', 48(3), 361-369. DOI: https://doi.org/10.1017/S0030605312001640
Steorts, R. C., Hall, R. & Fienberg, S. E. (2016), 'A Bayesian approach to graphical record linkage and deduplication', Journal of the American Statistical Association 111(516), 1660-1672. DOI: https://doi.org/10.1080/01621459.2015.1105807
Wright, J. A. (2011), Incorporating Genotype Uncertainty into mark-recapture-Type models for Estimating Abundance using DNA Samples, PhD thesis, University of Otago.
Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. & Gleeson, D. M. (2009), 'Incorporating genotype uncertainty into mark- recapture-type models for estimating abundance using DNA samples', Biometrics 65(3), 833-840. DOI: https://doi.org/10.1111/j.1541-0420.2008.01165.x
Yoshizaki, J., Brownie, C., Pollock, K. & Link, W. (2011), 'Modeling misidentification errors that result from use of genetic tags in capture-recapture studies', Environmental and Ecology Statistics 18(1), 27-55. DOI: https://doi.org/10.1007/s10651-009-0116-1
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).