Published
New Unconditional and Quantile Regression Model Erf-Weibull: An Alternative to Gamma, Gumbel and Exponentiated Exponential Distributions
Nuevo modelo incondicional y de regresión cuantiles Erf-Weibull: una alternativa a las distribuciones gamma, Gumbel y exponencial exponenciada
DOI:
https://doi.org/10.15446/rce.v47n2.110213Keywords:
Applied statistic, Gaussian error function, Regression models, Weibull distribution (en)Distribución Weibull, Estadística aplicada, Función de error gaussiano, Modelo de regresión. (es)
Downloads
In this paper, we present a stochastic model that uses the Gaussian error function to change the likelihood of the Weibull distribution without changing the complexity of its parametric space. Several mathematical properties are derived for the proposed model, which has numerical examples to illustrate its usability in practice. The failure rate function of the resulting model presents non-monotonous shapes, such as the shape of a bathtub, which represents a gain concerning the base distribution. Two parameter estimation methods are presented and evaluated numerically. In addition to the unconditional model, a regression model for the quantiles of the distribution is derived. Both absolute and regression models have applications to actual data and simulation studies, corroborating their use in practical situations.
En este artículo, presentamos un modelo estocástico que utiliza la función de error de Gauss para cambiar la probabilidad de la distribución de Weibull sin cambiar la complejidad de su espacio paramétrico. Se derivan varias propiedades matemáticas para el modelo propuesto, que tiene ejemplos numéricos para ilustrar su usabilidad en la práctica. La función de tasa de falla del modelo resultante presenta formas no monótonas, como la forma de una bañera, lo que representa una ganancia con respecto a la distribución base. Se presentan y evalúan numéricamente dos métodos de estimación de parámetros. Además del modelo incondicional, se deriva un modelo de regresión para los cuantiles de la distribución. Tanto los modelos absolutos como los de regresión tienen aplicaciones a datos reales y estudios de simulación, corroborando su uso en situaciones prácticas.
References
Alexander, C., Cordeiro, G., Ortega, E. & Sarabia, J. (2012), 'Generalized beta generated distributions', Computational Statistics & Data Analysis 56, 1880-1897.
Bourguignon, M., Silva, R. B. & Cordeiro, G. M. (2014), 'The weibull-G family of probability distributions', Journal of Data Science 12(1), 53-68.
Cheng, R. & Amin, N. (1979), 'Maximum product-of-spacings estimation with applications to the lognormal distribution', Math Report 791.
Cheng, R. & Amin, N. (1983), 'Estimating parameters in continuous univariate distributions with a shifted origin', Journal of the Royal Statistical Society: Series B (Methodological) 45(3), 394-403.
Cordeiro, G. M. & de Castro, M. (2011), 'A new family of generalized distributions', Journal of Statistical Computation and Simulation 81, 883-893.
Cordeiro, G. M., Ortega, E. M. & da Cunha, D. C. (2013), 'The exponentiated generalized class of distributions', Journal of Data Science 11(1), 1-27.
Eugene, N., Lee, C. & Famoye, F. (2002), 'Beta-normal distribution and its applications', Communications in Statistics - Theory and Methods 31, 497-512.
Fernández, L. M. Z. & De Andrade, T. A. (2020), 'The erf-G family: New unconditioned and log-linear regression models', Chilean Journal of Statistics (ChJS)11(1).
Kenney, J. F. & Keeping, E. S. (1962), Mathematics of statistics, Princeton, NJ: Van Nostrand. Lehmann, E. L. (1953), 'The power of rank tests', Annals of Mathematical Statistics 24, 23-43.
Marshall, A. N. & Olkin, I. (1997), 'A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families', Biometrika 84, 641-652.
Moors, J. J. (1988), 'A quantile alternative for kurtosis', J. Royal Statist. Soc. D 37, 25-32.
Nadarajah, S., Cordeiro, G. M. & Ortega, E. M. M. (2013), 'The exponentiated Weibull distribution: A survey', Statistical Papers 54, 839-877.
Nadarajah, S., Cordeiro, G. M. & Ortega, E. M. M. (2015), 'The Zografos- Balakrishnan-G family of distributions: Mathematical properties and applications', Communications in Statistics - Theory and Methods 44, 186-215.
Python Software Foundation (2024), 'Python language reference', https://www.python.org.
R Core Team (2022), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/
Ranneby, B. (1984), 'The maximum spacing method. an estimation method related to the maximum likelihood method', Scandinavian Journal of Statistics pp. 93-112.
Rinne, H. (2008), The Weibull Distribution: A Handbook, 1st edn, Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420087444
Risti¢, M. M. & Balakrishnan, N. (2012), 'The gamma-exponentiated exponential distribution', Journal of Statistical Computation and Simulation 82, 1191-1206.
Singh, R. K., Singh, S. K. & Singh, U. (2016), 'Maximum product spacings method for the estimation of parameters of generalized inverted exponential distribution under progressive type II censoring', Journal of Statistics and Management Systems p. 219-245.
Singh, U., Singh, S. K. & Singh, R. K. (2014), 'A comparative study of traditional estimation methods and maximum product spacings method in generalized inverted exponential distribution', Journal of statistics Applications & Probability pp. 153-169.
Stasinopoulos, D. M. & Rigby, R. A. (2007), 'Generalized additive models for location scale and shape (GAMLSS) in R', Journal of Statistical Software 23(7), 1-46. https://doi.org/10.18637/jss.v023.i07
Tahir, M. H. & Nadarajah, S. (2015), 'Parameter induction in continuous univariate distributions: Well-established G families', Anais da Academia Brasileira de Ciências 87, 539-568.
Wong, T. S. T. & Li, W. K. (2006), 'A note on the estimation of extreme value distributions using maximum product of spacings', IMS Lecture Notes-Monograph Series pp. 272-283.
Zografos, K. & Balakrishnan, N. (2009), 'On families of Beta- and generalized Gamma-generated distributions and associated inference', Statistical Methodology 6, 344-362.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).