Published
A Binary-Type Exponential Estimator for Estimating Finite Population Mean
Un estimador exponencial de tipo binario para estimar la media de una población finita
DOI:
https://doi.org/10.15446/rce.v47n1.110929Keywords:
Auxiliary variable., Bias, Binary-type Estimator, Exponential, Mean square error (en)Variable auxiliar, Sesgo, Estimador de tipo binario, Error cuadrático medio, Exponencial (es)
Downloads
This paper suggests binary-type exponential estimator for estimating finite population mean under simple random sampling using auxiliary information. The proposed estimator includes number of estimators as its member which has been listed. Mathematical expression for the bias and mean square error of proposed estimator have been derived up to first order approximation. An empirical study was carried out using some existing population data sets and it was found that the proposed estimator performed better than other existing estimators considered in the study including linear regression estimator.
Este artículo sugiere un estimador exponencial de tipo binario para estimar la media de una población finita bajo muestreo aleatorio simple utilizando información auxiliar. El estimador propuesto incluye el número de estimadores como miembros que se han enumerado. Se han obtenido expresiones matemáticas para el sesgo y el error cuadrático medio del estimador propuesto hasta una aproximación de primer orden. Se llevó a cabo un estudio empírico utilizando algunos parámetros de conjuntos de datos de población existentes y se encontró que el estimador propuesto funcionó mejor que otros estimadores existentes considerados en el estudio, incluido el estimador de regresión lineal.
References
Bahl, S. & Tuteja, R. (1991), 'Ratio and product type exponential estimators', Journal of Information and Optimization Sciences 12(1), 159-164. DOI: https://doi.org/10.1080/02522667.1991.10699058
Cochran, W. G. (1940), 'The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce', The Journal of Agricultural Science 30(2), 262-275. DOI: https://doi.org/10.1017/S0021859600048012
Grover, L. K. & Kaur, P. (2011), 'An improved estimator of the finite population mean in simple random sampling', Model Assisted Statistics and Applications 6(1), 47-55. DOI: https://doi.org/10.3233/MAS-2011-0163
Gupta, S., Shabbir, J., Sousa, R. & Real, P. C. (2012), 'Estimation of the mean of a sensitive variable in the presence of auxiliary information', Communications in Statistics-Theory and Methods 41(13), 2394-2404. DOI: https://doi.org/10.1080/03610926.2011.641654
Hansen, M. H., Hurwitz, W. N. & Madow, W. G. (1953), Sample Survey Methods and Theory, John Wiley and Sons, New York.
Kalidar, C. & Cingi, H. (2005), 'A new estimator using two auxiliary variables', Applied Mathematics and Computation 162(2), 901-908. DOI: https://doi.org/10.1016/j.amc.2003.12.130
Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N. & Smarandache, F. (2007), 'A General Family of estimators for Estimating Population Mean Using Known Value of Some Population Parameter(s)', Far East Journal of Theoretical Statistics 22, 181-191.
Kumar, S. (2013), 'Improved Estimators in Finite Population Surveys: Theory and Application', Journal of Applied Modern Statistical Method 12(1), 120-127. DOI: https://doi.org/10.22237/jmasm/1367381700
Maddala, G. S. (1977), Econometrics Economics handbook series, McGraw Hills Publication Company, New York.
Murthy, M. N. (1964), 'Product method of estimation', Sankhya A 26(1), 69-74. Murthy, M. N. (1977), Sampling: Theory and Methods, Statistical Pub. Society, India.
Rao, T. J. (1991), 'On certain methods of improving ratio and regression estima- tors', Communications in Statistics-Theory and Methods 20(10), 3325-3340. DOI: https://doi.org/10.1080/03610929108830705
Shabbir, J., Haq, A. & Gupta, S. (2014), 'A new differencecum exponential type estimator of finite population mean in simple random sampling', Revista Colombiana de Estadistica 37(1), 199-211. DOI: https://doi.org/10.15446/rce.v37n1.44366
Singh, R. V. K. & Audu, A. (2015), 'Improve exponential ratio-product type estimators for finite population mean', International Journal of Engineering Science and Innovative Technology 4(3), 317-322.
Singh, R. V. K. & Dahiru, S. (2021), 'A binary-type estimator for estimating population mean in simple random sampling', Advances and Applications in Mathematical Sciences 21(1), 1-13.
Srianstava, R. S., Srivastava, S. & Khare, B. (1989), 'Chain ratio type estimator for ratio of two population means using auxiliary characters', Communications in Statistics-Theory and Methods 18(10), 3917-3926. DOI: https://doi.org/10.1080/03610928908830131
Uraiwan, J. & Nuanpan, L. (2019), 'A combined family of ratio estimators for population mean using an auxiliary variable in simple random sampling', Journal of Mathematical and Fundamental Sciences 51(1), 1-12. DOI: https://doi.org/10.5614/j.math.fund.sci.2019.51.1.1
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Khazan Sher, Muhammad Iqbal, Hameed Ali, Soofia Iftikhar, Maggie Aphane, Ahmed Audu. (2025). Novel efficient estimators of finite population mean in simple random sampling. Scientific African, 27, p.e02598. https://doi.org/10.1016/j.sciaf.2025.e02598.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).