Published
Unit Regression Models to Explain Vote Proportions in the Brazilian Presidential Elections in 2018
Modelos de regresión unitaria para explicar las proporciones de votos en las elecciones presidenciales de Brasil en 2018
DOI:
https://doi.org/10.15446/rce.v47n2.111306Keywords:
Beta regression, simplex regression, Brazilian elections, double-bounded variables, GAMLSS (en)Elecciones brasileñas, GAMLSS, Regresión beta, Variables de doble límite (es)
Downloads
In this paper, we aim to identify the covariates associated with the proportion of votes of candidates elected in Brazilian municipalities with a population of more than 300,000 inhabitants. We analyzed the vote proportions from the 2018 presidential runoff election using distributions within the Generalized Additive Models for Location, Scale, and Shape (GAMLSS) class. Unit distributions are quite useful for modeling vote proportions due to their flexibility to accommodate asymmetry and heavy tails. Furthermore, they provide adequate representations of the physiological properties and the empirical distribution of the data. We _t the beta, simplex, unit gamma, and unit Lindley regression models, considering random and fixed effects components to verify spatial correlation among the municipalities. The beta regression with fixed components regarding Brazilian regions is superior. The covariates with significant effects are the proportion of evangelicals, monthly household income per capita, the political spectrum of the governors' party elected in 2014 and 2018, and if the municipality is the capital of the state. We note that some Brazilian regions impact the vote proportions' mean and dispersion.
En este artículo, nuestro objetivo es identificar las covariables asociadas con la proporción de votos de los candidatos electos en municipios brasileños con una población de más de 300,000 habitantes. Analizamos las proporciones de votos de la segunda vuelta de las elecciones presidenciales de 2018 utilizando distribuciones dentro de la clase de Modelos Aditivos Generalizados para localización, Escala y Forma (GAMLSS). Las distribuciones unitarias son muy útiles para modelar proporciones de votos debido a su flexibilidad para acomodar asimetría y colas pesadas. Además, proporcionan representaciones adecuadas de las propiedades fisiológicas y la distribución empírica de los datos. Ajustamos los modelos de regresión beta, simplex, gamma unitario y Lindley, considerando componentes de efectos aleatorios y fijos para verificar la correlación espacial entre los municipios. La regresión beta con componentes fijos respecto a las regiones brasileñas es superior. Las covariables con efectos significativos son la proporción de evangélicos, el ingreso mensual por hogar per cápita, el espectro político del partido de los gobernadores elegidos en 2014 y 2018, y si el municipio es la capital del estado. Notamos que algunas regiones brasileñas impactan en la media y la dispersión de las proporciones de voto.
References
Almeida Junior, P. M. d. & Souza, T. C. (2015), ‘Estimativas de votos da presidente Dilma Rousseff nas eleições presidenciais de 2010 sob o âmbito do bolsa família’, Ciência e Natura 37, 12–22.
Andrade, M. V., Noronha, K. V. M. d. S., Menezes, R. d. M., Souza, M. N., Reis, C. d. B., Martins, D. R. & Gomes, L. (2013), ‘Desigualdade socioeconômica no acesso aos serviços de saúde no Brasil: um estudo comparativo entre as regiões brasileiras em e 2008’, Economia Aplicada 17, 623–645.
Barndorff-Nielsen, O. E. & Jørgensen, B. (1991), ‘Some parametric models on the Simplex’, Journal of Multivariate Analysis 39, 106–116.
Bayer, F. M. & Cribari-Neto, F. (2017), ‘Model selection criteria in beta regression with varying dispersion’, Communications in Statistics-Simulation and Computation 46, 729–746.
Bayer, F. M., Tondolo, C. M. & Müller, F. M. (2018), ‘Beta regression control chart for monitoring fractions and proportions’, Computers & Industrial Engineering 119, 416–426.
Bayes, C. L., Bazán, J. L. & De Castro, M. (2017), ‘A quantile parametric mixed regression model for bounded response variables’, Statistics and its Interface 10, 483–493
BRASIL (2020), ‘Eleições’, EPEADATA. Available in: http://www.ipeadata.gov.br/Default.aspx. Accessed on: Dez .
Buuren, S. v. & Fredriks, M. (2001), ‘Worm plot: a simple diagnostic device for modelling growth reference curves’, Statistics in Medicine 20, 1259–1277.
Canterle, D. R. & Bayer, F. M. (2019), ‘Variable dispersion beta regressions with parametric link functions’, Statistical Papers 60, 1541–1567.
Carrasco, J. M. & Reid, N. (2019), ‘Simplex regression models with measurement error’, Communications in Statistics-Simulation and Computation 1, 1–16.
Cordeiro, G. M., Rocha, E., Figueiredo, D., Fernandes, A., Ortega, E. M. & Prataviera, F. (2020), ‘The beta and simplex regression models to explain homicides in state capitals of Brazil’, Model Assisted Statistics and Applications 15, 215–224.
Cribari-Neto, F. & Souza, T. C. (2012), ‘Testing inference in variable dispersion beta regressions’, Journal of Statistical Computation and Simulation 82, 1827–1843.
de Araújo, F. J. M., Guerra, R. R. & Peña-Ramírez, F. A. (2022), ‘The Burr XII quantile regression for salary-performance models with applications in the sports economy’, Computational and Applied Mathematic 41, 282.
Espinheira, P. L., da Silva, L. C. M., Silva, A. d. O. & Ospina, R. (2019), ‘Model selection criteria on beta regression for machine learning’, Machine Learning and Knowledge Extraction 1, 427–449.
Espinheira, P. L. & Silva, A. d. O. S. (2019), ‘Residual and influence analysis to a general class of simplex regression’, TEST pp. 1–30.
Ferrari, S. L. P. & Cribari-Neto, F. (2004), ‘Beta regression for modelling rates and proportions’, Journal of Applied Statistics 7, 799–815.
Ghosh, A. (2019), ‘Robust inference under the beta regression model with application to health care studies’, Statistical Methods in Medical Research 28, 871–888.
Guerra, R. R., Peña-Ramírez, F. A. & Bourguignon, M. (2020), ‘The unit extended Weibull families of distributions and its applications’, Journal of Applied Statistics 1, 1–19.
Hunter, W. & Power, T. J. (2019), ‘Bolsonaro and Brazil’s illiberal backlash’, Journal of Democracy 30, 68–82.
IBGE (2010), ‘Censo demográfico 2010’, IBGE: Insituto Brasileiro de Geografia e Estatística .
Karlsson, P., Månsson, K. & Kibria, B. G. (2020), ‘A Liu estimator for the beta regression model and its application to chemical data’, Journal of Chemometrics 34, e3300.
Lemonte, A. J. & Bazán, J. L. (2016), ‘New class of Johnson distributions and its associated regression model for rates and proportions’, Biometrical Journal 58, 727–746.
López, F. O. (2013), ‘A Bayesian approach to parameter estimation in simplex regression model: A comparison with beta regression’, Revista Colombiana de Estadística 36, 1–21.
Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., de Oliveira, R. P. & Ghitany, M. E. (2020), ‘The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates’, Journal of Applied Statistics 47, 954–974.
Pereira, T. L., Souza, T. C. & Cribari-Neto, F. (2014), ‘Uma avaliação da eficiência do gasto público nas regiões do Brasil’, Ciência e Natura 36, 23–36.
Renan, O. R., Raydonal, O., Wilton, B. & Francisco, C.-N. (2022), ‘Asset pricing in the Brazilian financial market: five-factor gamlss modeling.’, Empirical Economics, 2022 - Springer.
Rennó, L. (2020), ‘The Bolsonaro voter: Issue positions and vote choice in the 2018 Brazilian presidential elections’, Latin American Politics and Society 62, 1.
Ribeiro, T. F., Cordeiro, G. M., Pena-Ramírez, F. A. & Guerra, R. R. (2021), ‘A new quantile regression for the COVID-19 mortality rates in the United States’, Computational and Applied Mathematics 40, 1–16.
Ribeiro, T. F., Peña-Ramírez, F. A., Guerra, R. R. & Cordeiro, G. M. (2022), ‘Another unit burr xii quantile regression model based on the different reparameterization applied to dropout in brazilian undergraduate courses’, Plos one 17, e0276695.
Ribeiro, T. F., Seidel, E. J., Guerra, R. R., Peña-Ramírez, F. A. & da Silva, A. M. (2021), ‘Soybean production value in the rio grande do sulunder the gamlss framework’, Communications in Statistics: Case Studies, DataAnalysis and Applications 7, 146–165.
Rigby, R. A. & Stasinopoulos, D. M. (2005), ‘Generalized additive models for location, scale and shape,(with discussion)’, Applied Statistics 54, 507–554.
Rigby, R., Stasinopoulos, D. & Voudouris, V. (2013), ‘Discussion: A comparison of gamlss with quantile regression’, Statistical Modelling 13, 335–348.
Sardinha, E. & Costa, S. (2020), ‘Direita cresce e engole o centro no congresso mais fragmentado da história’, Congressoemfoco. Available in: https://congressoemfoco.uol.com.br/legislativo/direita-cresce-e-engole-o-centro-no-congresso-mais-fragmentado-da-historia/. Accessed on: Dez .
SIDRA (2020), ‘Censo demográfico’, Sistema IBGE de Recuperação Automática - SIDRA. Available in: https://sidra.ibge.gov.br/tabela/3974.
Simas, A. B., Barreto-Souza, W. & Rocha, A. V. (2010), ‘Improved estimators for a general class of beta regression models’, Computational Statistics & Data Analysis 54, 348–366.
Stasinopoulos, M. D., Rigby, R. A. & Bastiani, F. D. (2018), ‘Gamlss: a distributional regression approach’, Statistical Modelling 18, 248–273.
Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V. & De Bastiani, F. (2017), Flexible regression and smoothing: using GAMLSS in R, CRC Press.
TSE (2018), ‘Electoral data repository’, Results. Presents results of Brazilian general elections. Available in: http://english.tse.jus.br/the-brazilian-electoral-system/statistics. Accessed on: May .
Yero, E. J. H., Sacco, N. C. & do Carmo Nicoletti, M. (2020), ‘Effect of the municipal Human Development index on the results of the 2018 Brazilian Presidential elections’, Expert Systems with Applications p. 114305.
Zucco Jr, C. (2013), ‘When payouts pay off: Conditional cash transfers and voting behavior in brazil 2002–10’, American Journal of Political Science 57, 810–822.
Zucco Jr, C. (2015), ‘The impacts of conditional cash transfers in four presidential elections (2002–2014)’, Brazilian Political Science Review 9, 135–149.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).