Published

2024-07-01

The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications

La familia de distribuciones Zografos-Balakrishnan tipo I de colas pesadas G con aplicaciones

DOI:

https://doi.org/10.15446/rce.v47n2.111985

Keywords:

Zografos-Balakrishnan, Baseline Distribution, Heavy-Tailed, Actuarial Measures, Estimation, Simulations (en)
Distribución de referencia, Cola pesada, Estimación, Medidas actuariales, Simulaciones, Zografos-Balakrishnan. (es)

Downloads

Authors

  • Gomolemo Jacqueline Lekono Botswana International University of Science and Technology https://orcid.org/0000-0002-4914-2777
  • Broderick Oluyede Botswana International University of Science and Technology,
  • Lesego Gabaitiri Botswana International University of Science and Technology,

We propose a new family of distributions called the Zografos-Balakrishnan type-I heavy-tailed-G (ZBTIHT-G) distributions. A special model of the proposed family, namely Zografos-Balakrishnan type-I heavy-tailed-Weibull (ZBTIHT-W) model is thoroughly studied. Statistical properties of the new family of distributions including, among others, the hazard rate function, quantile function, moments, distribution of order statistics and Rényi entropy are presented. The maximum likelihood method of estimation is used for estimating the model parameters and Monte Carlo simulation is conducted to examine the performance of the estimators of the model parameters.The flexibility and importance of the new family of distributions are demonstrated by means of applications to real data sets.

Proponemos una nueva familia de distribuciones Zografos-Balakrishnan tipo I de colas pesadas G con aplicaciones (ZBTIHT-G). Un modelo especial de la familia propuesta Zografos-Balakrishnan tipo I-Weibull de cola pesada (ZBTIHT-W) está profundamente estudiada. Propiedades estadísticas de la nueva familia de distribuciones que incluyen, entre otras, la función de tasa de riesgo. Se presenta la función cuantil, momentos, distribución de esta dísticas de orden y entropía de Rényi. Se utiliza el método de estimación de máxima verosimilitud para estimar los parámetros del modelo y se realiza una simulación de Monte Carlo para examinar el desempeño de los estimadores de los parámetros del modelo. La flexibilidad e importancia de la nueva familia de distribuciones son demostradas mediante aplicaciones a conjuntos de datos reales.

References

Afify, A. Z., Cordeiro, G. M., Maed, M. E., Alizadeh, M., Al-Mofleh, H. & Nofal, Z. M. (2019), 'The Generalized Odd Lindley-G Family: Properties and Applications', Anais da Academia Brasileira de Ciências 91. DOI: https://doi.org/10.1590/0001-3765201920180040

Afify, A. Z., Gemeay, A. M. & Ibrahim, N. A. (2020), 'The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data', Mathematics 8(8), 1276. DOI: https://doi.org/10.3390/math8081276

Ahmad, Z., Mahmoudi, E. & Dey, S. (2022), 'A New Family of Heavy-Tailed Distributions with an Application to the Heavy-Tailed Insurance Loss Data', Communications in Statistics-Simulation and Computation 51(8), 4372-4395. DOI: https://doi.org/10.1080/03610918.2020.1741623

Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B. & Ghosh, I. (2017), 'The Gompertz-G Family of Distributions', Journal of Statistical Theory and Practice 11, 179-207. DOI: https://doi.org/10.1080/15598608.2016.1267668

Altun, E., Yousof, H. M., Chakraborty, S. & Handique, L. (2018), 'Zografos-Balakrishnan Burr XII Distribution: Regression Modeling and Applications', International Journal of Mathematics and Statistics 19(3), 46-70. DOI: https://doi.org/10.15672/HJMS.2017.410

Alzaatreh, A., Lee, C. & Famoye, F. (2013), 'A New Method for Generating Families of Continuous Distributions', Metron 71(1), 63-79. DOI: https://doi.org/10.1007/s40300-013-0007-y

Anwar, M., Bibi, A. et al. (2018), 'The Half-Logistic Generalized Distribution', Journal of Probability and Statistics 2018. DOI: https://doi.org/10.1155/2018/8767826

Arshad, R. M. I., Tahir, M., Chesneau, C., Khan, S. & Jamal, F. (2023), 'The Gamma Power Half-Logistic Distribution: Theory and Applications', São Paulo Journal of Mathematical Sciences 17(2), 1142-1169. DOI: https://doi.org/10.1007/s40863-022-00331-x

Chambers, J. M. (2018), Graphical Methods for Data Analysis, CRC Press. DOI: https://doi.org/10.1201/9781351072304

Chamunorwa, S., Makubate, B., Oluyede, B. & Chipepa, F. (2021), 'The Exponentiated Half Logistic-Log-Logistic Weibull Distribution: Model, Properties and Applications', Journal of Statistical Modelling: Theory and Applications 2(1), 101-120. DOI: https://doi.org/10.37119/jpss2022.v20i1.514

Cordeiro, G. M., Alizadeh, M. & Diniz Marinho, P. R. (2016), 'The Type I Half-Logistic Family of Distributions', Journal of Statistical Computation and Simulation 86(4), 707-728. DOI: https://doi.org/10.1080/00949655.2015.1031233

Eghwerido, J. T., Efe-Eyefia, E. & Zelibe, S. C. (2021), 'The Transmuted Alpha Power-G Family of Distributions', Journal of Statistics and Management Systems 24(5), 965-1002. DOI: https://doi.org/10.1080/09720510.2020.1794528

Gradshteyn, I. S. & Ryzhik, I. M. (2014), Table of Integrals, Series, and Products, Academic Press.

Hassan, A. S., Elgarhy, M. & Ahmad, Z. (2019), 'Type II Generalized Topp-Leone Family of Distributions: Properties and Applications', Journal of Data Science 17(4). DOI: https://doi.org/10.6339/JDS.201910_17(4).0001

Kang, S.-B. & Han, J.-T. (2009), 'Goodness-of--t Test for The Weibull Distribution Based on Multiply Type-II Censored Samples', Communications for Statistical Applications and Methods 16(2), 349-361. DOI: https://doi.org/10.5351/CKSS.2009.16.2.349

Marshall, A. W. & Olkin, I. (1997), 'A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families', Biometrika 84(3), 641-652. DOI: https://doi.org/10.1093/biomet/84.3.641

Moakofi, T., Oluyede, B. & Makubate, B. (2020), 'A New Gamma Generalized Lindley-Log-Logistic Distribution with Applications', Afrika Statistika 15(4), 2451-2481. DOI: https://doi.org/10.16929/as/2020.2451.168

Mozafari, M., Afshari, M., Alizadeh, M. & Karamikabir, H. (2019), 'The Zografos-Balakrishnan Odd Log-Logistic Generalized Half-Normal Distribution with Mathematical Properties and Simulations', Statistics, Optimization & Information Computing 7(1), 211-234. DOI: https://doi.org/10.19139/soic.v7i1.649

Nassar, M., Alzaatreh, A., Mead, M. & Abo-Kasem, O. (2017), 'Alpha Power Weibull Distribution: Properties and Applications', Communications in Statistics-Theory and Methods 46(20), 10236-10252. DOI: https://doi.org/10.1080/03610926.2016.1231816

Oluyede, B., Moako-, T., Chipepa, F. & Makubate, B. (2020), Journal of Statistical Modelling: Theory and Applications 1(2), 167-191.

Oluyede, B. O., Makubate, B.,Wanduku, D., Elbatal, I. & Sherina, V. (2017), 'The Gamma-Generalized Inverse Weibull Distribution with Applications to Pricing and Lifetime Data', Journal of Computations & Modelling 7(2), 1.

Oluyede, B., Pu, S., Makubate, B. & Qiu, Y. (2018), 'The Gamma-Weibull-G Family of Distributions with Applications', Austrian Journal of Statistics 47(1), 45-76. DOI: https://doi.org/10.17713/ajs.v47i1.155

Ramos, M. W. A., Cordeiro, G. M., Marinho, P. R. D., Dias, C. R. B. & Hamedani, G. (2013), 'The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications', Journal of Statistical Theory and Applications 12(3), 225-244. DOI: https://doi.org/10.2991/jsta.2013.12.3.2

Rannona, K., Oluyede, B. & Chamunorwa, S. (2022), 'The Gompertz-Topp Leone-G Family of Distributions with Applications', Journal of Probability and Statistical Science 20(1), 108-126. DOI: https://doi.org/10.37119/jpss2022.v20i1.630

Rényi, A. et al. (1961), On Measures of Information and Entropy, in 'Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability', Vol. 1.

Risti¢, M. M. & Balakrishnan, N. (2012), 'The Gamma-Exponentiated Exponential Distribution', Journal of statistical computation and simulation 82(8), 1191-1206. DOI: https://doi.org/10.1080/00949655.2011.574633

Tahir, M. H., Cordeiro, G. M., Mansoor, M. & Zubair, M. (2015), 'The Weibull-Lomax Distribution: Properties and Applications', Hacettepe Journal of Mathematics and Statistics 44(2), 455-474. DOI: https://doi.org/10.15672/HJMS.2014147465

Teamah, A.-E. A., Elbanna, A. A. & Gemeay, A. M. (2021), 'Heavy-Tailed Log-Logistic Distribution: Properties, Risk Measures and Applications', Statistics, Optimization & Information Computing 9(4), 910-941. DOI: https://doi.org/10.19139/soic-2310-5070-1220

Zhao, J., Ahmad, Z., Mahmoudi, E., Hafez, E. H. & Mohie El-Din, M. M. (2021), 'A New Class of Heavy-Tailed Distributions: Modeling and Simulating Actuarial Measures', Complexity 2021, 1-18. DOI: https://doi.org/10.1155/2021/5580228

Zhao, W., Khosa, S. K., Ahmad, Z., Aslam, M. & Afify, A. Z. (2020), 'Type-I Heavy-Tailed Family with Applications in Medicine, Engineering and Insurance', PloS one 15(8), e0237462. DOI: https://doi.org/10.1371/journal.pone.0237462

Zografos, K. & Balakrishnan, N. (2009), 'On Families of Beta and Generalized Gamma-Generated Distributions and Associated Inference', Statistical methodology 6(4), 344-362. DOI: https://doi.org/10.1016/j.stamet.2008.12.003

How to Cite

APA

Lekono, G. J., Oluyede, B. & Gabaitiri, L. (2024). The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications. Revista Colombiana de Estadística, 47(2), 237–282. https://doi.org/10.15446/rce.v47n2.111985

ACM

[1]
Lekono, G.J., Oluyede, B. and Gabaitiri, L. 2024. The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications. Revista Colombiana de Estadística. 47, 2 (Jul. 2024), 237–282. DOI:https://doi.org/10.15446/rce.v47n2.111985.

ACS

(1)
Lekono, G. J.; Oluyede, B.; Gabaitiri, L. The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications. Rev. colomb. estad. 2024, 47, 237-282.

ABNT

LEKONO, G. J.; OLUYEDE, B.; GABAITIRI, L. The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications. Revista Colombiana de Estadística, [S. l.], v. 47, n. 2, p. 237–282, 2024. DOI: 10.15446/rce.v47n2.111985. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/111985. Acesso em: 28 dec. 2025.

Chicago

Lekono, Gomolemo Jacqueline, Broderick Oluyede, and Lesego Gabaitiri. 2024. “The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications”. Revista Colombiana De Estadística 47 (2):237-82. https://doi.org/10.15446/rce.v47n2.111985.

Harvard

Lekono, G. J., Oluyede, B. and Gabaitiri, L. (2024) “The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications”, Revista Colombiana de Estadística, 47(2), pp. 237–282. doi: 10.15446/rce.v47n2.111985.

IEEE

[1]
G. J. Lekono, B. Oluyede, and L. Gabaitiri, “The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications”, Rev. colomb. estad., vol. 47, no. 2, pp. 237–282, Jul. 2024.

MLA

Lekono, G. J., B. Oluyede, and L. Gabaitiri. “The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications”. Revista Colombiana de Estadística, vol. 47, no. 2, July 2024, pp. 237-82, doi:10.15446/rce.v47n2.111985.

Turabian

Lekono, Gomolemo Jacqueline, Broderick Oluyede, and Lesego Gabaitiri. “The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications”. Revista Colombiana de Estadística 47, no. 2 (July 12, 2024): 237–282. Accessed December 28, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/111985.

Vancouver

1.
Lekono GJ, Oluyede B, Gabaitiri L. The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications. Rev. colomb. estad. [Internet]. 2024 Jul. 12 [cited 2025 Dec. 28];47(2):237-82. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/111985

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

200

Downloads

Download data is not yet available.