Publicado
The Zografos-Balakrishnan Type-I Heavy-Tailed-G Family of Distributions with Applications
La familia de distribuciones Zografos-Balakrishnan tipo I de colas pesadas G con aplicaciones
DOI:
https://doi.org/10.15446/rce.v47n2.111985Palabras clave:
Zografos-Balakrishnan, Baseline Distribution, Heavy-Tailed, Actuarial Measures, Estimation, Simulations (en)Distribución de referencia, Cola pesada, Estimación, Medidas actuariales, Simulaciones, Zografos-Balakrishnan. (es)
Descargas
We propose a new family of distributions called the Zografos-Balakrishnan type-I heavy-tailed-G (ZBTIHT-G) distributions. A special model of the proposed family, namely Zografos-Balakrishnan type-I heavy-tailed-Weibull (ZBTIHT-W) model is thoroughly studied. Statistical properties of the new family of distributions including, among others, the hazard rate function, quantile function, moments, distribution of order statistics and Rényi entropy are presented. The maximum likelihood method of estimation is used for estimating the model parameters and Monte Carlo simulation is conducted to examine the performance of the estimators of the model parameters.The flexibility and importance of the new family of distributions are demonstrated by means of applications to real data sets.
Proponemos una nueva familia de distribuciones Zografos-Balakrishnan tipo I de colas pesadas G con aplicaciones (ZBTIHT-G). Un modelo especial de la familia propuesta Zografos-Balakrishnan tipo I-Weibull de cola pesada (ZBTIHT-W) está profundamente estudiada. Propiedades estadísticas de la nueva familia de distribuciones que incluyen, entre otras, la función de tasa de riesgo. Se presenta la función cuantil, momentos, distribución de esta dísticas de orden y entropía de Rényi. Se utiliza el método de estimación de máxima verosimilitud para estimar los parámetros del modelo y se realiza una simulación de Monte Carlo para examinar el desempeño de los estimadores de los parámetros del modelo. La flexibilidad e importancia de la nueva familia de distribuciones son demostradas mediante aplicaciones a conjuntos de datos reales.
Referencias
Afify, A. Z., Cordeiro, G. M., Maed, M. E., Alizadeh, M., Al-Mofleh, H. & Nofal, Z. M. (2019), 'The Generalized Odd Lindley-G Family: Properties and Applications', Anais da Academia Brasileira de Ciências 91.
Afify, A. Z., Gemeay, A. M. & Ibrahim, N. A. (2020), 'The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data', Mathematics 8(8), 1276.
Ahmad, Z., Mahmoudi, E. & Dey, S. (2022), 'A New Family of Heavy-Tailed Distributions with an Application to the Heavy-Tailed Insurance Loss Data', Communications in Statistics-Simulation and Computation 51(8), 4372-4395.
Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B. & Ghosh, I. (2017), 'The Gompertz-G Family of Distributions', Journal of Statistical Theory and Practice 11, 179-207.
Altun, E., Yousof, H. M., Chakraborty, S. & Handique, L. (2018), 'Zografos-Balakrishnan Burr XII Distribution: Regression Modeling and Applications', International Journal of Mathematics and Statistics 19(3), 46-70.
Alzaatreh, A., Lee, C. & Famoye, F. (2013), 'A New Method for Generating Families of Continuous Distributions', Metron 71(1), 63-79.
Anwar, M., Bibi, A. et al. (2018), 'The Half-Logistic Generalized Distribution', Journal of Probability and Statistics 2018.
Arshad, R. M. I., Tahir, M., Chesneau, C., Khan, S. & Jamal, F. (2023), 'The Gamma Power Half-Logistic Distribution: Theory and Applications', São Paulo Journal of Mathematical Sciences 17(2), 1142-1169.
Chambers, J. M. (2018), Graphical Methods for Data Analysis, CRC Press.
Chamunorwa, S., Makubate, B., Oluyede, B. & Chipepa, F. (2021), 'The Exponentiated Half Logistic-Log-Logistic Weibull Distribution: Model, Properties and Applications', Journal of Statistical Modelling: Theory and Applications 2(1), 101-120.
Cordeiro, G. M., Alizadeh, M. & Diniz Marinho, P. R. (2016), 'The Type I Half-Logistic Family of Distributions', Journal of Statistical Computation and Simulation 86(4), 707-728.
Eghwerido, J. T., Efe-Eyefia, E. & Zelibe, S. C. (2021), 'The Transmuted Alpha Power-G Family of Distributions', Journal of Statistics and Management Systems 24(5), 965-1002.
Gradshteyn, I. S. & Ryzhik, I. M. (2014), Table of Integrals, Series, and Products, Academic Press.
Hassan, A. S., Elgarhy, M. & Ahmad, Z. (2019), 'Type II Generalized Topp-Leone Family of Distributions: Properties and Applications', Journal of Data Science 17(4).
Kang, S.-B. & Han, J.-T. (2009), 'Goodness-of--t Test for The Weibull Distribution Based on Multiply Type-II Censored Samples', Communications for Statistical Applications and Methods 16(2), 349-361.
Marshall, A. W. & Olkin, I. (1997), 'A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families', Biometrika 84(3), 641-652.
Moakofi, T., Oluyede, B. & Makubate, B. (2020), 'A New Gamma Generalized Lindley-Log-Logistic Distribution with Applications', Afrika Statistika 15(4), 2451-2481.
Mozafari, M., Afshari, M., Alizadeh, M. & Karamikabir, H. (2019), 'The Zografos-Balakrishnan Odd Log-Logistic Generalized Half-Normal Distribution with Mathematical Properties and Simulations', Statistics, Optimization & Information Computing 7(1), 211-234.
Nassar, M., Alzaatreh, A., Mead, M. & Abo-Kasem, O. (2017), 'Alpha Power Weibull Distribution: Properties and Applications', Communications in Statistics-Theory and Methods 46(20), 10236-10252.
Oluyede, B., Moako-, T., Chipepa, F. & Makubate, B. (2020), Journal of Statistical Modelling: Theory and Applications 1(2), 167-191.
Oluyede, B. O., Makubate, B.,Wanduku, D., Elbatal, I. & Sherina, V. (2017), 'The Gamma-Generalized Inverse Weibull Distribution with Applications to Pricing and Lifetime Data', Journal of Computations & Modelling 7(2), 1.
Oluyede, B., Pu, S., Makubate, B. & Qiu, Y. (2018), 'The Gamma-Weibull-G Family of Distributions with Applications', Austrian Journal of Statistics 47(1), 45-76.
Ramos, M. W. A., Cordeiro, G. M., Marinho, P. R. D., Dias, C. R. B. & Hamedani, G. (2013), 'The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications', Journal of Statistical Theory and Applications 12(3), 225-244.
Rannona, K., Oluyede, B. & Chamunorwa, S. (2022), 'The Gompertz-Topp Leone-G Family of Distributions with Applications', Journal of Probability and Statistical Science 20(1), 108-126.
Rényi, A. et al. (1961), On Measures of Information and Entropy, in 'Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability', Vol. 1.
Risti¢, M. M. & Balakrishnan, N. (2012), 'The Gamma-Exponentiated Exponential Distribution', Journal of statistical computation and simulation 82(8), 1191-1206.
Tahir, M. H., Cordeiro, G. M., Mansoor, M. & Zubair, M. (2015), 'The Weibull-Lomax Distribution: Properties and Applications', Hacettepe Journal of Mathematics and Statistics 44(2), 455-474.
Teamah, A.-E. A., Elbanna, A. A. & Gemeay, A. M. (2021), 'Heavy-Tailed Log-Logistic Distribution: Properties, Risk Measures and Applications', Statistics, Optimization & Information Computing 9(4), 910-941.
Zhao, J., Ahmad, Z., Mahmoudi, E., Hafez, E. H. & Mohie El-Din, M. M. (2021), 'A New Class of Heavy-Tailed Distributions: Modeling and Simulating Actuarial Measures', Complexity 2021, 1-18.
Zhao, W., Khosa, S. K., Ahmad, Z., Aslam, M. & Afify, A. Z. (2020), 'Type-I Heavy-Tailed Family with Applications in Medicine, Engineering and Insurance', PloS one 15(8), e0237462.
Zografos, K. & Balakrishnan, N. (2009), 'On Families of Beta and Generalized Gamma-Generated Distributions and Associated Inference', Statistical methodology 6(4), 344-362.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).