Published
Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response
Estimadores ponderados diseñados y calibrados en dos pasos de la varianza de la población finita para un diseño de encuesta enviada por correo caracterizado por la falta de respuesta
DOI:
https://doi.org/10.15446/rce.v47n2.112265Keywords:
Variance Estimator, Calibrated estimator, Auxiliary information, Mail survey, Two-step calibration (en)Estimador de varianza, Estimador calibrado, Información auxiliar, Encuesta enviada por correo, Calibración en dos pasos. (es)
Downloads
In this paper, a new class of variance estimators based on a two-step designed weights technique in the presence of non-response is proposed. The proposed estimator is designed to be robust against extreme values or outliers. In the first step, the calibration weights of the new class of estimators are set proportional to the design weights of the existing finite population variance estimator for a mailed survey design characterized by the presence of non-response. In the second step, the constants of proportionality are determined based on different objectives of the investigator such as bias reduction or minimum mean squared error. Many estimators available in the literature can be shown to be special cases of the proposed two-step calibrated estimator. The properties of the proposed estimators are studied theoretically and numerically. Empirical studies were conducted using ten simulated data to illustrate the performance of proposed estimators over existing ones. The results of the numerical comparison depicted the superiority of two members of the proposed estimator in all cases of data considered.
En este artículo se propone una nueva clase de estimadores de varianza basados en una técnica de ponderaciones diseñadas en dos pasos en presencia de falta de respuesta. El estimador propuesto está diseñado para ser robusto frente a valores extremos o valores atípicos. En el primer paso, las ponderaciones de calibración de la nueva clase de estimadores se establecen proporcionales a las ponderaciones de diseño del estimador de varianza de población finita existente para un diseño de encuesta enviada por correo caracterizado por la presencia de falta de respuesta. En el segundo paso, las constantes de proporcionalidad se determinan en función de diferentes objetivos del investigador, como la reducción del sesgo o el error cuadrático medio mínimo. Se puede demostrar que muchos estimadores disponibles en la literatura son casos especiales del estimador calibrado de dos pasos propuesto. Se estudian teórica y numéricamente las propiedades de los estimadores propuestos. Se realizaron estudios empíricos utilizando diez datos simulados para ilustrar el desempeño de los estimadores propuestos sobre los existentes. Los resultados de la comparación numérica mostraron la superioridad de dos miembros del estimador propuesto en todos los casos de datos considerados.
References
Alwin, D. F. (1977), 'Making errors in surveys: An overview', Sociological Methods & Research 6(2), 131-150.
Armstrong, J. S. (1975), 'Monetary incentives in mail surveys', The Public Opinion Quarterly 39(1), 111-116.
Audu, A., Danbaba, A., Abubakar, A., Ishaq, O. O. & Zakari, Y. (2020), 'on the efficiency of calibration ratio estimators of population mean in stratified random sampling', Proceeding of Royal Statistics Society Nigeria Local Group pp. 247-261.
Audu, A., Singh, R. & Khare, S. (2021), 'Developing calibration estimators for population mean using robust measures of dispersion under stratified random sampling', Statistics in Transition New Series 22(2), 125-142.
Audu, A., Singh, R., Khare, S. & Dauran, N. (2021), 'Almost unbiased estimators for population mean in the presence of non-response and measurement error', Journal of Statistics and Management Systems 24(3), 573-589.
Audu, A., Singh, R., Khare, S. & Dauran, N. (2022), 'Almost unbiased variance estimators under the simultaneous influence of non-response and measurement errors', Journal of Statistical Theory and Practice 16(2), 15.
Audu, A., Singh, R. V. K., Ishaq, O. O., Khare, S., Singh, R. & Adewara, A. A. (2024), 'On the estimation of finite population variance for a mail survey design in the presence of non-response using new conventional and calibrated estimators', Communications in Statistics-Theory and Methods 53(3), 848-864.
Audu, A., Singh, R. V. K., Muhammed, S., Nakone, B. & Ishaq, O. O. (2020), 'Efficiency of calibration ratio-cum-product estimators of population mean', Proceeding of Royal Statistics Society Nigeria Local Group pp. 234-246.
Bergk, V., Gasse, C., Schnell, R. & Haefeli, W. E. (2005), 'Mail surveys: obsolescent model or valuable instrument in general practice research?', Swiss Medical Weekly 135(1314), 189-189.
Bishop, G. E., Hippler, H.-J., Schwarz, N. & Strack, F. (1987), 'A comparison of response effects in self-administered and telephone surveys'.
Church, A. H. (1993), 'Estimating the effect of incentives on mail survey response rates: A meta-analysis', Public opinion quarterly 57(1), 62-79.
Clement, E. P. & Enang, E. I. (2015), 'Calibration approach alternative ratio estimator for population mean in stratified sampling', International Journal of Statistics and Economics 16(1), 83-93.
De Leeuw, E. D. (1992), Data quality in mail, telephone and face to face surveys., ERIC.
Dykes, L., Singh, S., A. sedory, S. & Louis, V. (2015), 'Calibrated estimators of population mean for a mail survey design', Communications in Statistics-Theory and Methods 44(16), 3403-3427.
Estevao, V. M. & Säarndal, C.-E. (2006), 'Survey estimates by calibration on complex auxiliary information', International Statistical Review 74(2), 127-147.
Filion, F. L. (1975), 'Estimating bias due to nonresponse in mail surveys', Public Opinion Quarterly 39(4), 482-492.
Gendall, P. & Healey, B. (2008), 'Alternatives to prepaid monetary incentives in mail surveys', International Journal of Public Opinion Research 20(4), 517-527.
Hansen, M. H. & Hurwitz, W. N. (1946), 'The problem of non-response in sample surveys', Journal of the American Statistical Association 41(236), 517-529.
Kim, J. K. & Park, M. (2010), 'Calibration estimation in survey sampling', International Statistical Review 78(1), 21-39.
Kim, J.-M., Sungur, E. A. & Heo, T.-Y. (2007), 'Calibration approach estimators in stratified sampling', Statistics & probability letters 77(1), 99-103.
Koyuncu, N. & Kadilar, C. (2016), 'Calibration weighting in stratified random sampling', Communications in Statistics-Simulation and Computation 45(7), 2267-2275.
Little, R. J. & Rubin, D. B. (2019), Statistical analysis with missing data, Vol. 793, John Wiley & Sons.
Lohr, S. L. (2021), Sampling: design and analysis, Chapman and Hall/CRC.
Maheux, B., Legault, C. & Lambert, J. (1989), 'Increasing response rates in physicians' mail surveys: an experimental study', American Journal of Public Health 79(5), 638-639.
Messer, B. L. (2009), Improving survey response in mail and Internet general public surveys using address-based sampling and mail contact procedures, PhD thesis, Washington State University.
Okafor, F. C. & Lee, H. (2000), 'Double sampling for ratio and regression estimation with sub-sampling the non-respondents', Survey Methodology 26(2), 183-188.
Ozgul, N. (2019), 'New calibration estimator based on two auxiliary variables in stratified sampling', Communications in Statistics-Theory and Methods 48(6), 1481-1492.
Rao, D. K., Tekabu, T. & Khan, M. G. (2016), New calibration estimators in stratified sampling, in '2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)', IEEE, pp. 66-70.
Rao, D., Khan, M. G. & Khan, S. (2012), 'Mathematical programming on multivariate calibration estimation in stratified sampling', World Academy of Science, Engineering and Technology 72, 58-62.
Särndal, C.-E. (2007), 'The calibration approach in survey theory and practice', Survey methodology 33(2), 99-119.
Singh, S. (2003), Advanced Sampling Theory With Applications: How Michael Selected Amy, Vol. 2, Springer Science & Business Media.
Sinha, R. & Kumar, V. (2015), 'Families of estimators for finite population variance using auxiliary character under double sampling the non-respondents', National Academy Science Letters 38, 501-505.
Tracy, D., Singh, S. & Arnab, R. (2003), 'Note on calibration in stratified and double sampling', Survey Methodology 29(1), 99-104.
Virtanen, V., Sirkiä, T. & Jokiranta, V. (2007), 'Reducing nonresponse by sms reminders in mail surveys', Social Science Computer Review 25(3), 384-395.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).