Published

2024-07-01

Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response

Estimadores ponderados diseñados y calibrados en dos pasos de la varianza de la población finita para un diseño de encuesta enviada por correo caracterizado por la falta de respuesta

DOI:

https://doi.org/10.15446/rce.v47n2.112265

Keywords:

Variance Estimator, Calibrated estimator, Auxiliary information, Mail survey, Two-step calibration (en)
Estimador de varianza, Estimador calibrado, Información auxiliar, Encuesta enviada por correo, Calibración en dos pasos. (es)

Downloads

Authors

  • A. Audu Usmanu Danfodiyo University
  • M. Lekganyan Sefako Makgatho Health Sciences University
  • O. O. Ishaq Aliko Dangote University of Science and Technology https://orcid.org/0000-0002-6122-0125
  • K. O. Aremu Usmanu Danfodiyo University, Sokoto

In this paper, a new class of variance estimators based on a two-step designed weights technique in the presence of non-response is proposed. The proposed estimator is designed to be robust against extreme values or outliers. In the first step, the calibration weights of the new class of estimators are set proportional to the design weights of the existing finite population variance estimator for a mailed survey design characterized by the presence of non-response. In the second step, the constants of proportionality are determined based on different objectives of the investigator such as bias reduction or minimum mean squared error. Many estimators available in the literature can be shown to be special cases of the proposed two-step calibrated estimator. The properties of the proposed estimators are studied theoretically and numerically. Empirical studies were conducted using ten simulated data to illustrate the performance of proposed estimators over existing ones. The results of the numerical comparison depicted the superiority of two members of the proposed estimator in all cases of data considered.

En este artículo se propone una nueva clase de estimadores de varianza basados en una técnica de ponderaciones diseñadas en dos pasos en presencia de falta de respuesta. El estimador propuesto está diseñado para ser robusto frente a valores extremos o valores atípicos. En el primer paso, las ponderaciones de calibración de la nueva clase de estimadores se establecen proporcionales a las ponderaciones de diseño del estimador de varianza de población finita existente para un diseño de encuesta enviada por correo caracterizado por la presencia de falta de respuesta. En el segundo paso, las constantes de proporcionalidad se determinan en función de diferentes objetivos del investigador, como la reducción del sesgo o el error cuadrático medio mínimo. Se puede demostrar que muchos estimadores disponibles en la literatura son casos especiales del estimador calibrado de dos pasos propuesto. Se estudian teórica y numéricamente las propiedades de los estimadores propuestos. Se realizaron estudios empíricos utilizando diez datos simulados para ilustrar el desempeño de los estimadores propuestos sobre los existentes. Los resultados de la comparación numérica mostraron la superioridad de dos miembros del estimador propuesto en todos los casos de datos considerados.

References

Alwin, D. F. (1977), 'Making errors in surveys: An overview', Sociological Methods & Research 6(2), 131-150. DOI: https://doi.org/10.1177/004912417700600201

Armstrong, J. S. (1975), 'Monetary incentives in mail surveys', The Public Opinion Quarterly 39(1), 111-116. DOI: https://doi.org/10.1086/268203

Audu, A., Danbaba, A., Abubakar, A., Ishaq, O. O. & Zakari, Y. (2020), 'on the efficiency of calibration ratio estimators of population mean in stratified random sampling', Proceeding of Royal Statistics Society Nigeria Local Group pp. 247-261.

Audu, A., Singh, R. & Khare, S. (2021), 'Developing calibration estimators for population mean using robust measures of dispersion under stratified random sampling', Statistics in Transition New Series 22(2), 125-142. DOI: https://doi.org/10.21307/stattrans-2021-019

Audu, A., Singh, R., Khare, S. & Dauran, N. (2021), 'Almost unbiased estimators for population mean in the presence of non-response and measurement error', Journal of Statistics and Management Systems 24(3), 573-589. DOI: https://doi.org/10.1080/09720510.2020.1759209

Audu, A., Singh, R., Khare, S. & Dauran, N. (2022), 'Almost unbiased variance estimators under the simultaneous influence of non-response and measurement errors', Journal of Statistical Theory and Practice 16(2), 15. DOI: https://doi.org/10.1007/s42519-021-00226-8

Audu, A., Singh, R. V. K., Ishaq, O. O., Khare, S., Singh, R. & Adewara, A. A. (2024), 'On the estimation of finite population variance for a mail survey design in the presence of non-response using new conventional and calibrated estimators', Communications in Statistics-Theory and Methods 53(3), 848-864. DOI: https://doi.org/10.1080/03610926.2022.2093906

Audu, A., Singh, R. V. K., Muhammed, S., Nakone, B. & Ishaq, O. O. (2020), 'Efficiency of calibration ratio-cum-product estimators of population mean', Proceeding of Royal Statistics Society Nigeria Local Group pp. 234-246.

Bergk, V., Gasse, C., Schnell, R. & Haefeli, W. E. (2005), 'Mail surveys: obsolescent model or valuable instrument in general practice research?', Swiss Medical Weekly 135(1314), 189-189. DOI: https://doi.org/10.4414/smw.2005.10893

Bishop, G. E., Hippler, H.-J., Schwarz, N. & Strack, F. (1987), 'A comparison of response effects in self-administered and telephone surveys'.

Church, A. H. (1993), 'Estimating the effect of incentives on mail survey response rates: A meta-analysis', Public opinion quarterly 57(1), 62-79. DOI: https://doi.org/10.1086/269355

Clement, E. P. & Enang, E. I. (2015), 'Calibration approach alternative ratio estimator for population mean in stratified sampling', International Journal of Statistics and Economics 16(1), 83-93.

De Leeuw, E. D. (1992), Data quality in mail, telephone and face to face surveys., ERIC.

Dykes, L., Singh, S., A. sedory, S. & Louis, V. (2015), 'Calibrated estimators of population mean for a mail survey design', Communications in Statistics-Theory and Methods 44(16), 3403-3427. DOI: https://doi.org/10.1080/03610926.2013.841932

Estevao, V. M. & Säarndal, C.-E. (2006), 'Survey estimates by calibration on complex auxiliary information', International Statistical Review 74(2), 127-147. DOI: https://doi.org/10.1111/j.1751-5823.2006.tb00165.x

Filion, F. L. (1975), 'Estimating bias due to nonresponse in mail surveys', Public Opinion Quarterly 39(4), 482-492. DOI: https://doi.org/10.1086/268245

Gendall, P. & Healey, B. (2008), 'Alternatives to prepaid monetary incentives in mail surveys', International Journal of Public Opinion Research 20(4), 517-527. DOI: https://doi.org/10.1093/ijpor/edn048

Hansen, M. H. & Hurwitz, W. N. (1946), 'The problem of non-response in sample surveys', Journal of the American Statistical Association 41(236), 517-529. DOI: https://doi.org/10.1080/01621459.1946.10501894

Kim, J. K. & Park, M. (2010), 'Calibration estimation in survey sampling', International Statistical Review 78(1), 21-39. DOI: https://doi.org/10.1111/j.1751-5823.2010.00099.x

Kim, J.-M., Sungur, E. A. & Heo, T.-Y. (2007), 'Calibration approach estimators in stratified sampling', Statistics & probability letters 77(1), 99-103. DOI: https://doi.org/10.1016/j.spl.2006.05.015

Koyuncu, N. & Kadilar, C. (2016), 'Calibration weighting in stratified random sampling', Communications in Statistics-Simulation and Computation 45(7), 2267-2275. DOI: https://doi.org/10.1080/03610918.2014.901354

Little, R. J. & Rubin, D. B. (2019), Statistical analysis with missing data, Vol. 793, John Wiley & Sons. DOI: https://doi.org/10.1002/9781119482260

Lohr, S. L. (2021), Sampling: design and analysis, Chapman and Hall/CRC. DOI: https://doi.org/10.1201/9780429298899

Maheux, B., Legault, C. & Lambert, J. (1989), 'Increasing response rates in physicians' mail surveys: an experimental study', American Journal of Public Health 79(5), 638-639. DOI: https://doi.org/10.2105/AJPH.79.5.638

Messer, B. L. (2009), Improving survey response in mail and Internet general public surveys using address-based sampling and mail contact procedures, PhD thesis, Washington State University.

Okafor, F. C. & Lee, H. (2000), 'Double sampling for ratio and regression estimation with sub-sampling the non-respondents', Survey Methodology 26(2), 183-188.

Ozgul, N. (2019), 'New calibration estimator based on two auxiliary variables in stratified sampling', Communications in Statistics-Theory and Methods 48(6), 1481-1492. DOI: https://doi.org/10.1080/03610926.2018.1433852

Rao, D. K., Tekabu, T. & Khan, M. G. (2016), New calibration estimators in stratified sampling, in '2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)', IEEE, pp. 66-70. DOI: https://doi.org/10.1109/APWC-on-CSE.2016.022

Rao, D., Khan, M. G. & Khan, S. (2012), 'Mathematical programming on multivariate calibration estimation in stratified sampling', World Academy of Science, Engineering and Technology 72, 58-62.

Särndal, C.-E. (2007), 'The calibration approach in survey theory and practice', Survey methodology 33(2), 99-119.

Singh, S. (2003), Advanced Sampling Theory With Applications: How Michael Selected Amy, Vol. 2, Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-007-0789-4

Sinha, R. & Kumar, V. (2015), 'Families of estimators for finite population variance using auxiliary character under double sampling the non-respondents', National Academy Science Letters 38, 501-505. DOI: https://doi.org/10.1007/s40009-015-0380-6

Tracy, D., Singh, S. & Arnab, R. (2003), 'Note on calibration in stratified and double sampling', Survey Methodology 29(1), 99-104.

Virtanen, V., Sirkiä, T. & Jokiranta, V. (2007), 'Reducing nonresponse by sms reminders in mail surveys', Social Science Computer Review 25(3), 384-395. DOI: https://doi.org/10.1177/0894439307299588

How to Cite

APA

Audu, A., Lekganyan, M., Ishaq, O. O. & Aremu, K. O. (2024). Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response. Revista Colombiana de Estadística, 47(2), 193–210. https://doi.org/10.15446/rce.v47n2.112265

ACM

[1]
Audu, A., Lekganyan, M., Ishaq, O.O. and Aremu, K.O. 2024. Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response. Revista Colombiana de Estadística. 47, 2 (Jul. 2024), 193–210. DOI:https://doi.org/10.15446/rce.v47n2.112265.

ACS

(1)
Audu, A.; Lekganyan, M.; Ishaq, O. O.; Aremu, K. O. Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response. Rev. colomb. estad. 2024, 47, 193-210.

ABNT

AUDU, A.; LEKGANYAN, M.; ISHAQ, O. O.; AREMU, K. O. Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response. Revista Colombiana de Estadística, [S. l.], v. 47, n. 2, p. 193–210, 2024. DOI: 10.15446/rce.v47n2.112265. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/112265. Acesso em: 11 nov. 2025.

Chicago

Audu, A., M. Lekganyan, O. O. Ishaq, and K. O. Aremu. 2024. “Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response”. Revista Colombiana De Estadística 47 (2):193-210. https://doi.org/10.15446/rce.v47n2.112265.

Harvard

Audu, A., Lekganyan, M., Ishaq, O. O. and Aremu, K. O. (2024) “Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response”, Revista Colombiana de Estadística, 47(2), pp. 193–210. doi: 10.15446/rce.v47n2.112265.

IEEE

[1]
A. Audu, M. Lekganyan, O. O. Ishaq, and K. O. Aremu, “Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response”, Rev. colomb. estad., vol. 47, no. 2, pp. 193–210, Jul. 2024.

MLA

Audu, A., M. Lekganyan, O. O. Ishaq, and K. O. Aremu. “Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response”. Revista Colombiana de Estadística, vol. 47, no. 2, July 2024, pp. 193-10, doi:10.15446/rce.v47n2.112265.

Turabian

Audu, A., M. Lekganyan, O. O. Ishaq, and K. O. Aremu. “Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response”. Revista Colombiana de Estadística 47, no. 2 (July 12, 2024): 193–210. Accessed November 11, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/112265.

Vancouver

1.
Audu A, Lekganyan M, Ishaq OO, Aremu KO. Two-Step Calibrated Designed Weighted Estimators of Finite Population Variance for a Mailed Survey Design Characterized by Non-response. Rev. colomb. estad. [Internet]. 2024 Jul. 12 [cited 2025 Nov. 11];47(2):193-210. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/112265

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Khazan Sher, Muhammad Iqbal, Hameed Ali, Soofia Iftikhar, Maggie Aphane, Ahmed Audu. (2025). Novel efficient estimators of finite population mean in simple random sampling. Scientific African, 27, p.e02598. https://doi.org/10.1016/j.sciaf.2025.e02598.

2. Ahmed Audu, Maggie Aphane, Jabir Ahmad, R. V. K. Singh. (2025). On the calibration estimators of finite population proportion under remainder systematic sampling. Quality & Quantity, 59(3), p.2661. https://doi.org/10.1007/s11135-025-02091-0.

3. Ahmed Audu, Maggie Aphane. (2025). Two-steps variance calibrated estimators with linear and non-linear constraints for mailed surveys with non-response. Alexandria Engineering Journal, 124, p.591. https://doi.org/10.1016/j.aej.2025.03.120.

4. Ahmed Audu, Mojeed Abiodun Yunusa, Maggie Aphane, Maria Lekganyane. (2025). Calibrated optional randomized response techniques for efficient and robust estimation of quantitative sensitive variables. Scientific Reports, 15(1) https://doi.org/10.1038/s41598-025-02033-8.

Dimensions

PlumX

Article abstract page views

203

Downloads

Download data is not yet available.