Published

2024-07-01

Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia

Modelado basado en datos del impacto de la eficacia diferencial de las vacunas contra el COVID-19 en dos ciudades socioeconómicamente contrastantes: Nueva York, EE.UU. y Bogotá, Colombia

DOI:

https://doi.org/10.15446/rce.v47n2.112805

Keywords:

COVID-19, SEIVR model, coronaviruses, vaccination, Equilibrium, Basic reproductive number, Parameter estimation (en)
COVID-19, Modelo SEIVR, Coronavirus, Vacunación, Equilibrio, Estimación de parámetros, Número reproductivo básico (es)

Downloads

Authors

  • Erika Johanna Martinez-Salinas Universidad Nacional de Colombia
  • Viswanathan Arunachalam Universidad Nacional de Colombia
  • Caitlin Seibel University of Michigan
  • Yutian Huang Lafayette College
  • Jackson Reisman The College of New Jersey
  • Moatlhodi Kgosimore Botswana University of Agriculture and Natural Resources
  • Anuj Mubayi Illinois State University
  • Padmanabhan Seshaiyer George Mason University

In an effort to curb the spread of COVID-19, various types of vaccines, including mRNA, viral vectors, and traditional ones, were globally approved and implemented. However, the distribution of vaccines in each country became a critical and determining factor in the disease's evolution. The present study aims to understand the differential impact of the different available vaccine types on disease burden. A proposed mathematical model considers multiple vaccines in a community to analyze the dynamics of COVID-19 transmission in two socioeconomically diverse regions. Secondary incidence data for the cities of Bogotá, Colombia, and New York, USA, from March 2020 to December 2021 were used to estimate vaccine-related parameters and actual transmission rates. The results suggest that although New York has more effective vaccines, higher vaccination rates, and lower poverty rates compared to Bogotá, its disease burden was significantly higher due to higher population density and, consequently, a greater number of contacts. This indicates that while more effective vaccines are crucial to flattening the curve, social distancing measures are equally important for quickly controlling the disease if the vaccination rate is not sufficiently high. Additionally, the model successfully captures the epidemiological behaviour of transmission through the use of vaccines, calculating the basic reproductive number in different scenarios and estimating the parameters of the proposed model.

En un esfuerzo por frenar la propagación del COVID-19, se aprobaron e implementaron globalmente varios tipos de vacunas, incluidas las de ARNm, vectores virales y las tradicionales. Sin embargo, la distribución de vacunas en cada país se convirtió en un factor crítico y determinante en la evolución de la enfermedad. El presente estudio tiene como objetivo comprender el impacto diferencial de los diferentes tipos de vacunas disponibles en la carga de la enfermedad. Se propone un modelo matemático que considera múltiples vacunas en una comunidad para analizar la dinámica de transmisión del COVID-19 en dos regiones socioeconómicamente diversas. Se utilizaron datos de incidencia secundaria de las ciudades de Bogotá, Colombia, y Nueva York, EE.UU., desde marzo de 2020 hasta diciembre de 2021 para estimar los parámetros relacionados con las vacunas y las tasas reales de transmisión. Los resultados sugieren que, aunque Nueva York tiene vacunas más efectivas, mayores tasas de vacunación y menores tasas de pobreza en comparación con Bogotá, su carga de enfermedad fue significativamente mayor debido a una mayor densidad de población y, por consiguiente, un mayor número de contactos. Esto indica que, si bien las vacunas más efectivas son cruciales para aplanar la curva, las medidas de distanciamiento social son igualmente importantes para controlar rápidamente la enfermedad si la tasa de vacunación no es lo suficientemente alta. Además, el modelo captura con éxito el comportamiento epidemiológico de la transmisión mediante el uso de vacunas, calculando el número reproductivo básico en diferentes escenarios y estimando los parámetros del modelo propuesto.

References

Andreadakis, Z., Kumar, A., Román, R. G., Tollefsen, S., Saville, M. & Mayhew, S. (2020), 'The COVID-19 vaccine development landscape', Nature Reviews. Drug Discovery 19(5), 305-306.

BBC News (2020), 'China's Covid vaccines: Who and how many people have been vaccinated?', https://www.bbc.com/news/world-asia-china-55212787. Accessed: 2021-07-12.

Brauer, F., Castillo-Chavez, C. & Castillo-Chavez, C. (2012), Mathematical models in population biology and epidemiology, Vol. 2, Springer.

Calafiore, G. C., Novara, C. & Possieri, C. (2020), 'A time-varying SIRD model for the COVID-19 contagion in Italy', Annual Reviews in Control 50, 361-372.

Calleri, F., Nastasi, G. & Romano, V. (2021), 'Continuous-time stochastic processes for the spread of covid-19 disease simulated via a monte carlo approach and comparison with deterministic models', Journal of Mathematical Biology 83(4), 34.

Carrillo-Larco, R. M. (2020), 'Covid-19 data sources in latin america and the caribbean', Travel Medicine and Infectious Disease 38, 101750.

Castillo-Chavez, C. (2013), Mathematical and statistical approaches to AIDS epidemiology, Vol. 83, Springer Science & Business Media.

CDC (2020), 'COVID-19 pandemic planning scenarios'. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.

Centers for Disease Control and Prevention (2021a), 'New York: CDC – NCHS Pressroom', https://www.cdc.gov/nchs/pressroom/states/newyork/ny.htm. Accessed: 2021-3-17.

Centers for Disease Control and Prevention (2021b), 'What You Should Know About the Possibility of COVID-19 Illness After Vaccination', https://archive.cdc.gov/. Accessed: 2021-08-09.

Central Intelligence Agency (2021), 'The World Factbook: Colombia -People and Society', https://www.cia.gov/the-world-factbook/countries/colombia/#people-and-society.Accessed:2021-10-19.

Choi, Y., Kim, J. S., Kim, J. E., Choi, H. & Lee, C. H. (2021), 'Vaccination prioritization strategies for covid-19 in korea: a mathematical modeling approach', International Journal of Environmental Research and Public Health 18(8), 4240.

Chowell, G., Diaz-Duenas, P., Miller, J., Alcazar-Velazco, A., Hyman, J., Fenimore, P. & Castillo-Chavez, C. (2007), 'Estimation of the reproduction number of dengue fever from spatial epidemic data', Mathematical Biosciences 208(2), 571-589.

Cintrón-Arias, A., Castillo-Chávez, C., Betencourt, L., Lloyd, A. L. & Banks, H. T. (2008), The estimation of the effective reproductive number from disease outbreak data, Technical report, North Carolina State University. Center for Research in Scientific Computation.

CoronaTracker (2021), 'Colombia COVID-19 Statistics', https://www.worldometers.info/coronavirus/country/colombia/. Accessed: 2021-10-24.

COVID19 Vaccine Tracker (2021), 'Colombia: The Latest on COVID-19 Vaccine Development and Distribution', https://covid19.trackvaccines.org/country/colombia/. Accessed: 2021-10-24.

DePietro, A. (2021), 'U.s. poverty rate by state in 2021', https://www.forbes.com/sites/andrewdepietro/2021/11/04/us-poverty-rate-by-state-in-2021/?sh=205544c21b38. Accessed: 2022-1-30.

Google News (2021), 'COVID-19 Map', https://news.google.com/covid19/map?hl=en-US&mid=%2Fm%2F02-286&gl=US&ceid=US%3Aen. Accessed: 2021-11-7.

Jentsch, P. C., Anand, M. & Bauch, C. T. (2021), 'Prioritising covid-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study', The Lancet Infectious Diseases 21(8), 1097-1106.

Katella, K. (2021), 'Comparing the covid-19 vaccines: How are they different?'.https://www.yalemedicine.org/news/covid-19-vaccine-comparison

Keno, T. D. & Etana, H. T. (2023), 'Optimal control strategies of covid-19 dynamics model', Journal of Mathematics 2023, 1-20.

Kerekes, S., Ji, M., Shih, S.-F., Chang, H.-Y., Harapan, H., Rajamoorthy, Y., Singh, A., Kanwar, S. & Wagner, A. L. (2021), 'Differential effect of vaccine effectiveness and safety on covid-19 vaccine acceptance across socioeconomic groups in an international sample', Vaccines 9(9), 1010.

Kermack, W. O. & McKendrick, A. G. (1927), 'A contribution to the mathematical theory of epidemics', Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character 115(772), 700-721.

Khan, A. A., Ullah, S. & Amin, R. (2022), 'Optimal control analysis of covid-19 vaccine epidemic model: a case study', The European Physical Journal Plus 137(1), 1-25.

Khan, A., Hassan, M. & Imran, M. (2014), 'Estimating the basic reproduction number for single-strain dengue fever epidemics', Infectious Diseases of Poverty 3, 1-17.

Le, T. T., Cramer, J. P., Chen, R. & Mayhew, S. (2020), 'Evolution of the COVID-19 vaccine development landscape', Nature Reviews Drug Discovery 19(10), 667-668.

Macrotrends (2019), 'Colombia Poverty Rate 2008-2024', https://www.macrotrends.net/countries/COL/colombia/poverty-rate#:~:text=Colombia%20poverty%20rate%20for%202019, a%200.1%25%20increase%20from%202017.Accessed: 2022-1-30.

Martcheva, M. (2015), An introduction to mathematical epidemiology, Vol. 61, Springer.

Ministerio de Salud y Protección Social (2020), 'Colombia confirma su primer caso de covid-19'.

National Institute of Health (2021), 'COVID-19 in Colombia', https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx.

Ndwandwe, D. & Wiysonge, C. S. (2021), 'COVID-19 vaccines', Current Opinion in Immunology 71, 111-116.

Niño-Torres, D., Ríos-Gutiérrez, A., Arunachalam, V., Ohajunwa, C. & Seshaiyer, P. (2021), 'Stochastic modeling, analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes in Bogotá: A case study', Infectious Disease Modelling.

Niño-Torres, D., Ríos-Gutiérrez, A., Arunachalam, V., Ohajunwa, C. & Seshaiyer, P. (2022), 'Stochastic modeling, analysis, and simulation of the covid-19 pandemic with explicit behavioral changes in bogotá: A case study', Infectious Disease Modelling 7(1), 199-211.

NYC Department of City Planning (2022), 'NYC Population Facts', https://www.nyc.gov/site/planning/planning-level/nyc-population/nyc-population.page. Accessed: 2022-1-31.

NYC Department of Health (2021), 'COVID-19: Latest Data', https://www1.nyc.gov/site/doh/covid/covid-19-data.page. Accessed: 2022-1-26.

NYC Department of Health (2022a), 'COVID-19: Data on Vaccines', https://www1.nyc.gov/site/doh/covid/covid-19-data-vaccines.page. Accessed:2022-1-26.

NYC Department of Health (2022b), 'COVID-19: Data Trends and Totals', https://www1.nyc.gov/site/doh/covid/covid-19-data-totals.page. Accessed:2022-1-26.

Ogueda-Oliva, A. G., Martínez-Salinas, E. J., Arunachalam, V. & Seshaiyer, P.(2023), 'Machine learning for predicting the dynamics of infectious diseases during travel through physics informed neural networks', Journal of Machine Learn- ing for Modeling and Computing 4(3).

Our World in Data (2021), 'United States: COVID-19 Testing', https://ourworldindata.org/coronavirus/country/united-states#how-many-tests-are-performed-each-day. Accessed: 2021-11-7.

Our World in Data Colombia (2021), 'Coronavirus (COVID-19) Vaccinations', https://ourworldindata.org/covid-vaccinations?country=COL. Accessed:2022-2-9.

Our World in Data USA (2021), 'Coronavirus (COVID-19) Vaccinations', https://ourworldindata.org/covid-vaccinations?country=USA. Accessed:2022-2-9.

Padmanabhan, P., Seshaiyer, P. & Castillo-Chavez, C. (2017), 'Mathematical modeling, analysis and simulation of the spread of Zika with influence of sexual transmission and preventive measures', Letters in Biomathematics 4(1), 148-166.

Reuters (2021a), 'Colombia: The latest coronavirus counts, charts and maps', https://graphics.reuters.com/world-coronavirus-tracker-and-maps/countries-and-territories/colombia/. Accessed: 2021-10-24.

Reuters (2021b), 'Guest view: Colombia's struggle against poverty', https://www.reuters.com/breakingviews/guest-view-colombias-struggle-against-poverty-2021-05-11/. Accessed: 2022-1-30.

Rosenberg, E. S., Dorabawila, V., Easton, D., Bauer, U. E., Kumar, J., Hoen, R., Hoefer, D., Wu, M., Lutterloh, E., Conroy, M. B. et al. (2022), 'Covid-19 vaccine effectiveness in new york state', New England Journal of Medicine 386(2), 116-127.

Sadri, K., Aminikhah, H. & Aminikhah, M. (2023), 'A mathematical system of COVID-19 disease model: Existence, uniqueness, numerical and sensitivity analysis', MethodsX 10, 102045.

Salgado, M. R. M., Salgado, R. & Anand, R. (2022), South Asia's path to resilient growth, International Monetary Fund.

Silver, C. (2021), 'The new york city recovery index', https://www.investopedia.com/new-york-city-nyc-economic-recovery-index-5072042. Accessed: 2021-10-11.

Statista (2021), 'COVID-19 Transmission Rate in the U.S. by State', https: //www.statista.com/statistics/1119412/covid-19-transmission-rate-us-by-state/. Accessed: 2021-1-31.

Tchoumi, S. Y., Schwartz, E. J. & Tchuenche, J. M. (2024), 'A deterministic model of COVID-19 with differential infectivity and vaccination booster', Decision Analytics Journal 10, 100374.

Unidad de salud (2021), 'Gobierno definió fecha de inicio de vacunación y compra de más dosis', https://www.eltiempo.com/salud/vacunacion-en-colombia-inicia-el-20-de-febrero-asi-lo-aseguro-el-presidente-ivan-duque-563557. Accessed: 2022-1-30.

Van Rossum, G. & Drake, F. L. (2009), Python 3 Reference Manual, CreateSpace,Scotts Valley, CA.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ., Feng, Y., Moore, E. W.

VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P. & SciPy 1.0 Contributors (2020), 'SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python', Nature Methods 17, 261-272.

Wang, Y., Lu, G. & Du, J. (2022), 'Calibration and prediction for the inexact sirmodel', Mathematical Biosciences and Engineering 19(3), 2800-2818.

Watson, O. J., Barnsley, G., Toor, J., Hogan, A. B., Winskill, P. & Ghani, A. C. (2022), 'Global impact of the -rst year of COVID-19 vaccination: a mathematical modelling study', The Lancet Infectious Diseases 22(9), 1293-1302.

World Health Organization (2021), 'WHO Coronavirus (COVID-19) Dashboard: Colombia', https://covid19.who.int/region/amro/country/co. Accessed: 2021-10-24.

World's Capital Cities (2022), 'Capital Facts for Bogota, Colombia', https://colombia.travel/en/bogota. Accessed: 2022-1-31.

Yaladanda, N., Mopuri, R., Vavilala, H. P. & Mutheneni, S. R. (2022), 'Modelling the impact of perfect and imperfect vaccination strategy against SARS CoV-2 by assuming varied vaccine efficacy over india', Clinical Epidemiology and Global Health 15, 101052.

Yang, B., Yu, Z. & Cai, Y. (2022), 'The impact of vaccination on the spread of covid-19: Studying by a mathematical model', Physica A: Statistical Mechanics and its Applications 590, 126717.

Yoshida, N. (2023), 'Existence of exact solution of the susceptible-exposedinfectious-recovered (SEIR) epidemic model', Journal of Differential Equations 355, 103-143.

Zhang, S., Ponce, J., Zhang, Z., Lin, G. & Karniadakis, G. (2021), 'An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City', PLoS Computational Biology 17(9), e1009334.

How to Cite

APA

Martinez-Salinas, E. J., Arunachalam, V., Seibel, C., Huang, Y., Reisman, J., Kgosimore, M., Mubayi, A. and Seshaiyer, P. (2024). Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia. Revista Colombiana de Estadística, 47(2), 423–451. https://doi.org/10.15446/rce.v47n2.112805

ACM

[1]
Martinez-Salinas, E.J., Arunachalam, V., Seibel, C., Huang, Y., Reisman, J., Kgosimore, M., Mubayi, A. and Seshaiyer, P. 2024. Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia. Revista Colombiana de Estadística. 47, 2 (Jul. 2024), 423–451. DOI:https://doi.org/10.15446/rce.v47n2.112805.

ACS

(1)
Martinez-Salinas, E. J.; Arunachalam, V.; Seibel, C.; Huang, Y.; Reisman, J.; Kgosimore, M.; Mubayi, A.; Seshaiyer, P. Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia. Rev. colomb. estad. 2024, 47, 423-451.

ABNT

MARTINEZ-SALINAS, E. J.; ARUNACHALAM, V.; SEIBEL, C.; HUANG, Y.; REISMAN, J.; KGOSIMORE, M.; MUBAYI, A.; SESHAIYER, P. Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia. Revista Colombiana de Estadística, [S. l.], v. 47, n. 2, p. 423–451, 2024. DOI: 10.15446/rce.v47n2.112805. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/112805. Acesso em: 3 dec. 2024.

Chicago

Martinez-Salinas, Erika Johanna, Viswanathan Arunachalam, Caitlin Seibel, Yutian Huang, Jackson Reisman, Moatlhodi Kgosimore, Anuj Mubayi, and Padmanabhan Seshaiyer. 2024. “Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia”. Revista Colombiana De Estadística 47 (2):423-51. https://doi.org/10.15446/rce.v47n2.112805.

Harvard

Martinez-Salinas, E. J., Arunachalam, V., Seibel, C., Huang, Y., Reisman, J., Kgosimore, M., Mubayi, A. and Seshaiyer, P. (2024) “Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia”, Revista Colombiana de Estadística, 47(2), pp. 423–451. doi: 10.15446/rce.v47n2.112805.

IEEE

[1]
E. J. Martinez-Salinas, “Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia”, Rev. colomb. estad., vol. 47, no. 2, pp. 423–451, Jul. 2024.

MLA

Martinez-Salinas, E. J., V. Arunachalam, C. Seibel, Y. Huang, J. Reisman, M. Kgosimore, A. Mubayi, and P. Seshaiyer. “Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia”. Revista Colombiana de Estadística, vol. 47, no. 2, July 2024, pp. 423-51, doi:10.15446/rce.v47n2.112805.

Turabian

Martinez-Salinas, Erika Johanna, Viswanathan Arunachalam, Caitlin Seibel, Yutian Huang, Jackson Reisman, Moatlhodi Kgosimore, Anuj Mubayi, and Padmanabhan Seshaiyer. “Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia”. Revista Colombiana de Estadística 47, no. 2 (July 12, 2024): 423–451. Accessed December 3, 2024. https://revistas.unal.edu.co/index.php/estad/article/view/112805.

Vancouver

1.
Martinez-Salinas EJ, Arunachalam V, Seibel C, Huang Y, Reisman J, Kgosimore M, Mubayi A, Seshaiyer P. Data-Driven Modeling of Impact of Differential Efficacy of COVID-19 Vaccines in Two Socio-Economically Contrasting Cities: New York, USA and Bogotá, Colombia. Rev. colomb. estad. [Internet]. 2024 Jul. 12 [cited 2024 Dec. 3];47(2):423-51. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/112805

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

259

Downloads

Download data is not yet available.