Published
Cancer Data Modelling: Application of the Gamma-Odd Topp-Leone-G Family of Distributions
Modelado de datos sobre el cáncer: aplicación de la familia de distribuciones GammaOdd Topp-Leone-G
DOI:
https://doi.org/10.15446/rce.v47n2.112929Keywords:
exponentiated general distribution, gamma function, Maximum likelihood estimation, Topp-Leone Distribution, Cancer Modelling (en)Distribución general exponenciada, Función gamma, Estimación de máxima verosimilitud, Topp-Leone, Modelado de cáncer. (es)
Downloads
The study introduces a new generalised family of distributions for cancer data modelling using a generalisation of the gamma function and a Topp-Leone-G distribution called the Gamma-Odd Topp-Leone-G (GOTL-G). Cancer data is normally characterised by complex heterogeneous properties like skewness, kurtosis, and presence of extreme values which makes it difficult to model using classical distributions. We derived multiple statistical properties including the linear representation, Renyi entropy, quantile functions, distribution of order statistics, and maximum likelihood estimates which normally guarantees a positive effect on the generalisability of cancer data. Interestingly, we observed that these derived statistical properties make it possible for the generalisation of different models which are useful in the analysis, control, insurance, and survival of cancer patients. Our results show that this new family of distributions can be applied to a variety of data sets such as bladder and breast cancer data which xhibited high level of skewness and kurtosis as well as symmetric attributes. Therefore, we can conclude that the GOTL-G family of distributions can be extremely useful in capturing distinct complex heterogeneous properties normally exhibited by cancer patients. We recommend that this new family of distributions can be useful in modelling complex real-life applications including cancer data.
El estudio presenta una nueva familia generalizada de distribuciones para el modelado de datos sobre cáncer utilizando una generalización de la función gamma y una distribución Topp-Leone-G llamada Gamma-Odd Topp-Leone-G (GOTL-G). Los datos sobre el cáncer normalmente se caracterizan por propiedades heterogéneas complejas como asimetría, curtosis y presencia de valores extremos, lo que dificulta el modelado utilizando distribuciones clásicas. Derivamos múltiples propiedades estadísticas, incluida la representación lineal, la entropía de Re'nyi, funciones cuantiles, estadísticas de distribución de orden y estimaciones de máxima verosimilitud, que normalmente garantizan un efecto positivo en la generalización de los datos sobre el cáncer. Curiosamente, observamos que estas propiedades estadísticas derivadas permiten la generalización de diferentes modelos que son útiles en el análisis, control, seguro y supervivencia de pacientes con cáncer. Nuestros resultados muestran que esta nueva familia de distribuciones se puede aplicar a una variedad de conjuntos de datos, como datos de cáncer de vejiga y de mama, que mostraron un alto nivel de asimetría y curtosis, así como atributos simétricos. Por lo tanto, podemos concluir que la familia de distribuciones GOTL-G puede ser extremadamente útil para capturar distintas propiedades heterogéneas complejas que normalmente exhiben los pacientes con cáncer. Recomendamos que esta nueva familia de distribuciones pueda resultar útil para modelar aplicaciones complejas de la vida real, incluidos datos sobre cáncer.
References
Al-Shomrani, A., Arif, O., Shawky, A., Hanif, S. & Shahbaz, M. Q. (2016), 'Topp-Leone family of distributions: Some properties and applications', Pakistan Journal of Statistics and Operation Research 12, 443-451. DOI: https://doi.org/10.18187/pjsor.v12i3.1458
Arshad, R. M. I., Tahir, M. H., Chesneau, C. & Jamal, F. (2020), 'The Gamma Kumaraswamy-G family of distributions: Theory, inference and applications', Statistics in Transition New Series 21, 17-40. DOI: https://doi.org/10.21307/stattrans-2020-053
Bilal, M., Mohsin, M. & Aslam, M. (2021), 'Weibull-Exponential distribution and its application in monitoring industrial process', Mathematical Problems in Engineering 2021, 6650237. DOI: https://doi.org/10.1155/2021/6650237
Bolker, B. (2014), 'Maximum likelihood estimation and analysis with the bbmle package', R package version 1, 17.
Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. (1995), 'A limited memory algorithm for bound constrained optimization', SIAM Journal on scientific computing 16(5), 1190-1208. DOI: https://doi.org/10.1137/0916069
Chen, G. & Balakrishnan, N. (1995), 'A general purpose approximate goodness of- fit test', Journal of Quality Technology 27, 154-161. DOI: https://doi.org/10.1080/00224065.1995.11979578
Chipepa, F., Oluyede, B. & Makubate, B. (2020), 'The Topp-Leone Marshall- Olkin-G family of distributions with applications', International Journal of Statistics and Probability 9, 1-15. DOI: https://doi.org/10.5539/ijsp.v9n4p15
Cordeiro, G. M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E. M. M. & Altun, E. (2017), 'The generalised Odd Log-logistic family of distributions: Properties, regression models and applications', Journal of Statistical Computation and Simulation 87, 908-932. DOI: https://doi.org/10.1080/00949655.2016.1238088
Cordeiro, G. M. & de Castro, M. (2011), 'A new family of generalised distributions', Journal of Statistical Computation and Simulation 81, 883-898. DOI: https://doi.org/10.1080/00949650903530745
Eugene, N.and Lee, C. & Famoye, F. (2002), 'Beta-normal distribution and its applicationsl', Communications in Statistics-Theory and Methods 31, 497-512. DOI: https://doi.org/10.1081/STA-120003130
Franssen, L. C., Lorenzi, T., Burgess, A. E. & Chaplain, M. A. (2019), 'A mathematical framework for modelling the metastatic spread of cancer', Bulletin of mathematical biology 81, 1965-2010. DOI: https://doi.org/10.1007/s11538-019-00597-x
Gradshteyn, I. S. & Ryzhik, I. M. (2000), Table of Integrals, Series, and Products, 6th edn, San Diego: Academic, San Diego.
Grizzi, F. & Chiriva-Internati, M. (2006), 'Cancer: looking for simplicity and finding complexity', Cancer Cell International 6(1), 1-7. DOI: https://doi.org/10.1186/1475-2867-6-4
Haq, M. A. U., Elgarhy, M. & Hashmi, S. (2019), 'The generalised odd Burr III family of distributions: Properties, applications and characterizations', Journal of Taibah University for Science 13, 961-971. DOI: https://doi.org/10.1080/16583655.2019.1666785
Hosseini, B., Afshari, M. & Alizadeh, M. (2018), 'The generalised odd Gamma-G family of distributions: Properties and applications', Austrian Journal of Statistics 47, 69-89. DOI: https://doi.org/10.17713/ajs.v47i2.580
Jamal, F., Abuzaid, A. H., Tahir, M. H., Nasir, M. A., Khan, S. & Mashwani, W. K. (2021), 'New modified Burr III distribution, properties and applications', Mathematical and Computational Applications 26, 82. DOI: https://doi.org/10.3390/mca26040082
Kumar, D., Jain, N. & Gupta, S. (2015), 'The type i generalised half-logistic distribution based on upper record values', Journal of Probability and Statistics 2015. DOI: https://doi.org/10.1155/2015/393608
Lee, E. & Wang, J. (2003), Statistical Methods for Survival Data Analysis, 3rd edn, John Wiley & Sons, Hoboken, New Jersey. DOI: https://doi.org/10.1002/0471458546
Mufudza, C., Sorofa, W. & Chiyaka, E. (2012), 'Assessing the effects of estrogen on the dynamics of breast cancer', Computational and Mathematical Methods in Medicine 2012, 473572. https://doi.org/10.1155/2012/473572 DOI: https://doi.org/10.1155/2012/473572
Musekwa, R. R. & Makubate, B. (2023), 'Statistical analysis of Saudi Arabia and UK Covid-19 data using a new generalized distribution', Scientific African 22, e01958. DOI: https://doi.org/10.1016/j.sciaf.2023.e01958
Oluyede, B., Pu, S., Makubate, B. & Qiu, Y. (2018), 'The Gamma-Weibull-G family of distributions', Austrian Journal of Statistics 47, 45-76. DOI: https://doi.org/10.17713/ajs.v47i1.155
Pawar, A., Chowdhury, O. R. & Salvi, O. (2022), 'A narrative review of survival analysis in oncology using R', Cancer Research, Statistics, and Treatment 5(3), 554-561. DOI: https://doi.org/10.4103/crst.crst_230_22
Peter, P. O., Oluyede, B., Bindele, H. F., Ndwapi, N. & Mabikwa, O. (2021), 'The gamma odd Burr III-G family of distributions: M model, properties and applications', Revista Colombiana de Estadística 44, 331-368. DOI: https://doi.org/10.15446/rce.v44n2.89320
Qi, X., Chen, G., Li, Y., Cheng, X. & Li, C. (2019), 'Applying neural-networkbased machine learning to additive manufacturing: current applications, challenges, and future perspectives', Engineering 5(4), 721-729. DOI: https://doi.org/10.1016/j.eng.2019.04.012
Sanusi, A., Doguwa, S., Audu, I. & Baraya, Y. (2020), 'Topp - Leone Exponential-G family of distributions: Properties and applications', Journal of Science and Technology Research 2, 83-96. DOI: https://doi.org/10.9734/ajpas/2020/v7i330186
Tahir, M. H., Cordeiro, G. M., Mansoor, M. & Zubaír, M. (2015), 'The Weibull-Lomax distribution: Properties and applications', Hacettepe Journal of Mathematics and Statistics 44, 455-474. DOI: https://doi.org/10.15672/HJMS.2014147465
Torabi, H. & Hedesh, N. M. (2012), 'The gamma-uniform distribution and its applications', Kybernetika 48, 16-30.
Tuoyo, D. O., Opone, F. C. & Ekhosuehi, N. (2021), 'The Topp-Leone Weibull distribution: Its properties and application', Earth line Journal of Mathematical Sciences 7, 381-401. DOI: https://doi.org/10.34198/ejms.7221.381401
Wolberg, W.and Mangasarian, O., Street, N. & Street, W. (1995), Breast Cancer
Wisconsin (Diagnostic). DOI: https://doi.org/10.24432/C5DW2B.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






