Published
A Flexible Discrete Probability Model for Partly Cloudy Days
Un modelo de probabilidad discreto flexible para días parcialmente nublados
DOI:
https://doi.org/10.15446/rce.v48n1.113025Keywords:
Statistical model, Failure Rate, Recurrence relation of moments, Estimation. (en)Modelo estadístico, Tasa de fallas, Relación de recurrencia de momentos, Estimación. (es)
Downloads
In this article, a discrete time probability model is proposed, its mathematical properties and formulation are studied under the nabla structure which include discrete Laplace transformation, moments, recurrence relation between moments, index of dispersion, and asymptotic distribution of extremes. Furthermore, application of model with rereference to the partly cloudy days is discussed. Moreover, model compatibility is checked by chi-square, Anderson-Darling, Cramér-von Mises, information criterion and Vuong statistics and found that proposed model is the best strategy for such data analysis.
En este artículo se propone un modelo de probabilidad en tiempo discreto, se estudian sus propiedades matemáticas y su formulación bajo la estructura nabla que incluye transformación discreta de Laplace, momentos, relación de recurrencia entre momentos, índice de dispersión y distribución asintótica de extremos. Además, se discute la aplicación del modelo con referencia a los días parcialmente nublados. Además, la compatibilidad del modelo se verifica mediante chi-cuadrado, Anderson-Darling, Cramér-von Mises, criterio de información y estadísticas de Vuong y se encontró que el modelo propuesto es la mejor estrategia para dicho análisis de datos.
References
Aderoju, S. A., Jolayemi, E. T. & Ibrahim, A. O. (2017), 'A comparative study on zero-truncated generalized poisson-lindley and zero-truncated poisson-lindley distributions', International Journal of Mathematical Archive 8(3), 92-98.
Ameen, R., Hasan, K. O. S. E. & Jarad, F. (2019), 'On the discrete laplace transform', Results in Nonlinear Analysis 2(2), 61-70.
Banik, S. & Kibria, B. M. (2009), 'On some discrete distributions and their applications with real life data', Journal of Modern Applied Statistical Methods 8(2), 8.
Bohner, M. & Peterson, A. (2001), Dynamic Equations on Time Scales, Birkhäuser, Boston.
Bohner, M. & Peterson, A. (2003), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston.
Carter, M. C. (1972), 'A model for thunderstorm activity: Use of the compound negative binomial-positive binomial distribution', Journal of the Royal Statistical Society: Series C (Applied Statistics) 21(2), 196-201.
Chakraborty, S. (2015), 'Generating discrete analogues of continuous probability distributions-a survey of methods and constructions', Journal of Statistical Distributions and Applications 2, 1-30.
Consul, P. C. & Famoye, F. (1989), 'The truncated generalized poisson distribution and its estimation', Communications in Statistics-Theory and Methods 18(10), 3635-3648.
Ganji, M. & Gharari, F. (2018a), 'The discrete delta and nabla mittag-leffer distributions', Communications in Statistics-Theory and Methods 47(18), 4568-4589.
Ganji, M. & Gharari, F. (2018b), 'A new method for generating discrete analogues of continuous distributions', Journal of Statistical Theory and Applications 17(1), 39-58.
Gharari, F., Bakouch, H. & Karakaya, K. (2023), 'A pliant model to count data: Nabla poisson-lindley distribution with a practical data example', Bulletin of the Iranian Mathematical Society 49(3), 32.
Gharari, F. & Ganji, M. (2021), 'A new stochastic order based on discrete laplace transform and some ordering results of the order statistics', Communications in Statistics-Theory and Methods 52(6), 1963-1980.
Hagmark, P. E. (2008), 'On construction and simulation of count data models', Mathematics and Computers in Simulation 77, 72-80.
Hussain, T., Bakouch, H. S. & Chesneau, C. (2019), 'A new probability model with application to heavy-tailed hydrological data', Environmental and Ecological Statistics 26, 127-151.
Leadbetter, M. R., Lindgren, G. & Rootzen, H. (1987), Extremes and Related Properties of Random Sequences and Processes, Springer Verlag, New York.
Lloyd-Smith, J. O. (2007), 'Maximum likelihood estimation of the negative binomial dispersion parameter for highly over dispersed data, with applications to infectious diseases', PloS one 2(2), e180.
Murthy, D. N. P., Xie, M. & Jiang, R. (2004), Weibull Models, John Wiley and Sons.
Nory, M. K. M., Abd, T. & Algamal, Z. Y. (2022), 'Count data modeling under over dispersion issue: A comparative study', Mathematical Statistician and Engineering Applications 71(3), 1398-1406.
Rohatgi, V. K. & Saleh, A. M. E. (2015), An introduction to probability and statistics, John Wiley and Sons.
Roy, D. (2004), 'Discrete rayleigh distribution', IEEE Transactions on Reliability 53(2), 255-260.
Sampford, M. R. (1955), 'The truncated negative binomial distribution', Biometrika 42(1/2), 58-69.
Vuong, Q. H. (1989), 'Likelihood ratio tests for model selection and non-nested hypotheses', Econometrica 57(2), 307-333.
Zakerzadeh, H. & Dolati, A. (2009), 'Generalized lindley distribution', Journal of Mathematical Extension 3(2), 1-17.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).