Published

2025-07-01

Logarithmic imputation methods under correlated measurement errors

Métodos de imputación logarítmica bajo errores de medida correlacionados

DOI:

https://doi.org/10.15446/rce.v48n2.113190

Keywords:

Correlated measurement errors, Missing data, Imputation, Mean squre error. (en)
Error de medición correlacionado, Datos faltantes, Imputación, Error cuadrático medio. (es)

Downloads

Authors

  • Shashi Bhushan Department of Statistics, University of Lucknow, Lucknow, India, 226007
  • Anoop Kumar Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India
  • Shivam Shukla Amity University Uttar Pradesh, India

In sample survey, missing data is a common issue. Various imputation techniques have been developed to handle the missing data issue. But, a miniscule work has been done to handle missing data issue in the presence of measurement errors (ME) and correlated measurement errors (CME). This manuscript proposes a few logarithmic imputation techniques and the accompanying point estimators to address the missing data issue when the data are affected by CME. The mean square error (MSE) of the proposed imputation methods is reported to the first order approximation. The dominance conditions of the proposed imputation methods over the coeval imputation methods are obtained. Afterward, a simulation study using an artificially drawn population and a real data application are carried out to support the theoretical findings.

En las encuestas por muestreo, la falta de datos es un problema común. Se han desarrollado varias técnicas de imputación para abordar el problema de la falta de datos. Sin embargo, se ha realizado un trabajo minúsculo para abordar el problema de la falta de datos en presencia de errores de medición (ME) y errores de medición correlacionados (CME). Este manuscrito propone algunas técnicas de imputación logarítmica y los estimadores puntuales que las acompañan para abordar el problema de la falta de datos cuando los datos se ven afectados por CME. El error cuadrático medio (MSE) de los métodos de imputación propuestos se informa a la aproximación de primer orden. Se obtienen las condiciones de dominancia de los métodos de imputación propuestos sobre los métodos de imputación coetáneos. Luego, se lleva a cabo un estudio de simulación utilizando una población dibujada artificialmente y una aplicación de datos reales para respaldar los hallazgos teóricos.

References

Ahmed, M., Al-Titi, O., Al-Rawi, Z. & Abu-Dayyeh, W. (2006), `Estimation of a population mean using different imputation methods', Statistics in Transition 7(6), 1247-1264.

Anas, M., Huang, Z., Shahzad, U., Zaman, T. & Shahzadi, S. (2022), `Compromised imputation based mean estimators using robust quantile regression', Communications in Statistics - Theory and Methods 53(5), 1700-1715. DOI: https://doi.org/10.1080/03610926.2022.2108057

Audu, A. & Singh, R. (2021), `Exponential-type regression compromised imputation class of estimators', Journal of Statistics and Management Systems 24(6), 1253-1266. DOI: https://doi.org/10.1080/09720510.2020.1814501

Audu, A., Singh, R. & Khare, S. (2023), `New regression-type compromised imputation class of estimators with known parameters of auxiliary variable', Communications in Statistics-Simulation and Computation 52(10), 4789-4801. DOI: https://doi.org/10.1080/03610918.2021.1970182

Bhushan, S. & Kumar, A. (2022), `Novel log type class of estimators under ranked set sampling', Sankhya B 84, 421-447. DOI: https://doi.org/10.1007/s13571-021-00265-y

Bhushan, S. & Kumar, A. (2023), `Imputation of missing data using multi auxiliary information under ranked set sampling', Communications in Statistics-Simulation and Computation pp. 1-22. DOI: https://doi.org/10.1080/03610918.2023.2288796

Bhushan, S., Kumar, A., Pandey, A. & Singh, S. (2023), `Estimation of population mean in presence of missing data under simple random sampling', Communications in Statistics-Simulation and Computation 52(12), 6048-6069. DOI: https://doi.org/10.1080/03610918.2021.2006713

Bhushan, S., Kumar, A. & Shukla, S. (2023a), `Novel logarithmic type estimators in presence of measurement errors', Journal of Statistical Theory and Practice 17(3), 35. DOI: https://doi.org/10.1007/s42519-023-00333-8

Bhushan, S., Kumar, A. & Shukla, S. (2023b), `On classes of robust estimators in presence of correlated measurement errors', Measurement 220, 113383. DOI: https://doi.org/10.1016/j.measurement.2023.113383

Bhushan, S., Kumar, A. & Shukla, S. (2024), `Performance evaluation of novel logarithmic estimators under correlated measurement errors', Communications in Statistics-Theory and Methods 53(15), 5353-5363. DOI: https://doi.org/10.1080/03610926.2023.2219793

Bhushan, S., Kumar, A., Shukla, S., Bakr, M. E., Tashkandy, Y. A. & Hossain, M. M. (2023), `New logarithmic type imputation techniques in presence of measurement errors', Alexandria Engineering Journal 71, 707-730. DOI: https://doi.org/10.1016/j.aej.2023.03.035

Bhushan, S. & Pandey, A. (2021), `Optimality of ratio-type imputation methods for estimation of population mean using higher order moment of an auxiliary variable', Journal of Statistical Theory and Practice 15, 48. DOI: https://doi.org/10.1007/s42519-021-00187-y

Diana, G. & Giordan, M. (2012), `Finite population variance estimation in presence of measurement errors', Communications in Statistics - Theory and Methods 41, 4302-4314. DOI: https://doi.org/10.1080/03610926.2011.573165

Gregoire, T. & Salas, C. (2008), `Ratio estimation with measurement error in the auxiliary variate, Biometrics 65(2), 590-598. DOI: https://doi.org/10.1111/j.1541-0420.2008.01110.x

Heitjan, D. & Basu, S. (1996), `Distinguishing missing at random and missing completely at random, The American Statistician 50, 207-213. DOI: https://doi.org/10.1080/00031305.1996.10474381

Kumar, A., Bhushan, S., Shukla, S., Almanjahie, I. M., Khan, M. J. S. & Al-Omari, A. I. (2024), `On some robust imputation methods in presence of correlated measurement errors with real data applications', Alexandria Engineering Journal 104, 136-149. DOI: https://doi.org/10.1016/j.aej.2024.05.112

Kumar, A., Bhushan, S., Shukla, S., Emam, W., Tashkandy, Y. & Gupta, R. (2023), `Impact of correlated measurement errors on some efficient classes of estimators', Journal of Mathematics 2023(1), 8140831. DOI: https://doi.org/10.1155/2023/8140831

Lee, H., Rancourt, E. & Sarndal, C. (1994), `Experiments with variance estimation from survey data with imputed values', Journal of Official Statistics 10, 231-243.

Manisha & Singh, R. (2001), `An estimation of population mean in the presence of measurement errors', J. Ind. Soc. Agri. Statist. 54(1), 13-18.

Prasad, S. (2018), `A study on new methods of ratio exponential type imputation in sample surveys', Hacettepe Journal of Mathematics and Statistics 47(5), 1281-1301.

Prasad, S. (2021), `Some compromised exponential ratio type imputation methods in simple random sampling', Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91(2), 337-349. DOI: https://doi.org/10.1007/s40010-020-00719-4

Rubin, R. (1976), `Inference and missing data', Biometrika 63(3), 581-592. DOI: https://doi.org/10.1093/biomet/63.3.581

Rueda, M. & Gonzalez, S. (2004), `Missing data and auxiliary information in surveys', Computational Statistics 19, 551-567. DOI: https://doi.org/10.1007/BF02753912

Sahoo, L. N., Sahoo, R. K. & Senapati, S. C. (2006), `An empirical study on the accuracy of ratio and regression estimators in the presence of measurement error', Monte Carlo Methods and Applications 12, 495-501. DOI: https://doi.org/10.1163/156939606779329026

Sarndal, C., Swensson, B. & Wretman, J. (2003), Model assisted survey sampling, Springer Science & Business Media.

Shahzad, U., Al-Noor, N., Hanif, M., Sajjad, I. & Anas, M. (2022), `Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices', Communications in Statistics - Simulation and Computation 51(8), 4276-4295. DOI: https://doi.org/10.1080/03610918.2020.1740266

Shahzad, U. & Hanif, M. (2019), `Some imputation based new estimators of population mean under non-response', Journal of Statistics and Management Systems 22(8), 1381-1399. DOI: https://doi.org/10.1080/09720510.2019.1586124

Shalabh (1997), `Ratio method of estimation in the presence of measurement errors', J. Ind. Soc. Agri. Statist. 50(2), 150-155.

Singh, H. & Karpe, N. (2008), `Estimation of population variance using auxiliary information in the presence of measurement errors', Statistics in Transition-New Series 9(3), 443-470.

Singh, H. & Karpe, N. (2010a), `Effect of measurement errors on the separate and combined ratio and product estimators in stratified random sampling', Journal of Modern Applied Statistical Methods 16(4), 231-241.

Singh, H. & Karpe, N. (2010b), `Estimation of mean, ratio and product using auxiliary information in the presence of measurement errors in sample surveys', Journal of Statistical Theory and Practice 4(1), 111-136. DOI: https://doi.org/10.1080/15598608.2010.10411976

Singh, N., Vishwakarma, G. K. & Kim, J. M. (2022), `Computing the effect of measurement errors on efficient variant of the product and ratio estimators of mean using auxiliary information', Communications in Statistics-Simulation and Computation 51(2), 604-625. DOI: https://doi.org/10.1080/03610918.2019.1656742

Singh, S. (2009), `A new method of imputation in survey sampling', Statistics: A Journal of Theoretical and Applied Statistics 43(5), 499-511. DOI: https://doi.org/10.1080/02331880802605114

Singh, S. & Deo, B. (2003), `Imputation by power transformation', Statistical Papers 44, 555-579. DOI: https://doi.org/10.1007/BF02926010

Singh, S. & Horn, S. (2000), `Compromised imputation in survey sampling', Metrika 51, 267-276. DOI: https://doi.org/10.1007/s001840000054

Toutenburg, H., Srivastava, V. & Shalabh (2008), `Amputation versus imputation of missing values through ratio method in sample surveys', Statistical Papers 49, 237-247. DOI: https://doi.org/10.1007/s00362-006-0009-4

Vishwakarma, G. & Singh, A. (2022), `Computing the effect of measurement errors on ranked set sampling estimators of the population mean', Concurrency and Computation: Practice and Experience 34(27), e7333. DOI: https://doi.org/10.1002/cpe.7333

Vishwakarma, G., Singh, A. & Singh, N. (2020), `Calibration under measurement errors', Journal of King Saud University-Science 32(7), 2950-2961. DOI: https://doi.org/10.1016/j.jksus.2020.07.017

How to Cite

APA

Bhushan, S., Kumar, A. & Shukla, S. (2025). Logarithmic imputation methods under correlated measurement errors. Revista Colombiana de Estadística, 48(2), 67–91. https://doi.org/10.15446/rce.v48n2.113190

ACM

[1]
Bhushan, S., Kumar, A. and Shukla, S. 2025. Logarithmic imputation methods under correlated measurement errors. Revista Colombiana de Estadística. 48, 2 (Jul. 2025), 67–91. DOI:https://doi.org/10.15446/rce.v48n2.113190.

ACS

(1)
Bhushan, S.; Kumar, A.; Shukla, S. Logarithmic imputation methods under correlated measurement errors. Rev. colomb. estad. 2025, 48, 67-91.

ABNT

BHUSHAN, S.; KUMAR, A.; SHUKLA, S. Logarithmic imputation methods under correlated measurement errors. Revista Colombiana de Estadística, [S. l.], v. 48, n. 2, p. 67–91, 2025. DOI: 10.15446/rce.v48n2.113190. Disponível em: https://revistas.unal.edu.co/index.php/estad/article/view/113190. Acesso em: 9 nov. 2025.

Chicago

Bhushan, Shashi, Anoop Kumar, and Shivam Shukla. 2025. “Logarithmic imputation methods under correlated measurement errors”. Revista Colombiana De Estadística 48 (2):67-91. https://doi.org/10.15446/rce.v48n2.113190.

Harvard

Bhushan, S., Kumar, A. and Shukla, S. (2025) “Logarithmic imputation methods under correlated measurement errors”, Revista Colombiana de Estadística, 48(2), pp. 67–91. doi: 10.15446/rce.v48n2.113190.

IEEE

[1]
S. Bhushan, A. Kumar, and S. Shukla, “Logarithmic imputation methods under correlated measurement errors”, Rev. colomb. estad., vol. 48, no. 2, pp. 67–91, Jul. 2025.

MLA

Bhushan, S., A. Kumar, and S. Shukla. “Logarithmic imputation methods under correlated measurement errors”. Revista Colombiana de Estadística, vol. 48, no. 2, July 2025, pp. 67-91, doi:10.15446/rce.v48n2.113190.

Turabian

Bhushan, Shashi, Anoop Kumar, and Shivam Shukla. “Logarithmic imputation methods under correlated measurement errors”. Revista Colombiana de Estadística 48, no. 2 (July 8, 2025): 67–91. Accessed November 9, 2025. https://revistas.unal.edu.co/index.php/estad/article/view/113190.

Vancouver

1.
Bhushan S, Kumar A, Shukla S. Logarithmic imputation methods under correlated measurement errors. Rev. colomb. estad. [Internet]. 2025 Jul. 8 [cited 2025 Nov. 9];48(2):67-91. Available from: https://revistas.unal.edu.co/index.php/estad/article/view/113190

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

227

Downloads

Download data is not yet available.